diff options
Diffstat (limited to 'networking')
-rw-r--r-- | networking/tls_sp_c32.c | 211 |
1 files changed, 58 insertions, 153 deletions
diff --git a/networking/tls_sp_c32.c b/networking/tls_sp_c32.c index 3b04730..74ded2c 100644 --- a/networking/tls_sp_c32.c +++ b/networking/tls_sp_c32.c @@ -455,8 +455,10 @@ static void sp_256_sub_8_p256_mod(sp_digit* r) } #endif -/* Multiply a and b into r. (r = a * b) */ -static void sp_256_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b) +/* Multiply a and b into r. (r = a * b) + * r should be [16] array (512 bits). + */ +static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b) { #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__) sp_digit rr[15]; /* in case r coincides with a or b */ @@ -704,9 +706,11 @@ static void sp_256_mont_tpl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* } } -/* Shift the result in the high 256 bits down to the bottom. */ +/* Shift the result in the high 256 bits down to the bottom. + * High half is cleared to zeros. + */ #if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff -static void sp_256_mont_shift_8(sp_digit* rr) +static void sp_512to256_mont_shift_8(sp_digit* rr) { uint64_t *r = (void*)rr; int i; @@ -717,7 +721,7 @@ static void sp_256_mont_shift_8(sp_digit* rr) } } #else -static void sp_256_mont_shift_8(sp_digit* r) +static void sp_512to256_mont_shift_8(sp_digit* r) { int i; @@ -728,7 +732,10 @@ static void sp_256_mont_shift_8(sp_digit* r) } #endif -/* Mul a by scalar b and add into r. (r += a * b) */ +/* Mul a by scalar b and add into r. (r += a * b) + * a = p256_mod + * b = r[0] + */ static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/) { // const sp_digit* a = p256_mod; @@ -857,11 +864,11 @@ static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/) /* Reduce the number back to 256 bits using Montgomery reduction. * - * a A single precision number to reduce in place. + * a Double-wide number to reduce in place. * m The single precision number representing the modulus. * mp The digit representing the negative inverse of m mod 2^n. */ -static void sp_256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/) +static void sp_512to256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/) { // const sp_digit* m = p256_mod; sp_digit mp = p256_mp_mod; @@ -884,7 +891,7 @@ static void sp_256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/ goto inc_next_word0; } } - sp_256_mont_shift_8(a); + sp_512to256_mont_shift_8(a); if (word16th != 0) sp_256_sub_8_p256_mod(a); sp_256_norm_8(a); @@ -892,7 +899,7 @@ static void sp_256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/ else { /* Same code for explicit mp == 1 (which is always the case for P256) */ sp_digit word16th = 0; for (i = 0; i < 8; i++) { - /*mu = a[i];*/ +// mu = a[i]; if (sp_256_mul_add_8(a+i /*, m, mu*/)) { int j = i + 8; inc_next_word: @@ -904,148 +911,46 @@ static void sp_256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/ goto inc_next_word; } } - sp_256_mont_shift_8(a); + sp_512to256_mont_shift_8(a); if (word16th != 0) sp_256_sub_8_p256_mod(a); sp_256_norm_8(a); } } -#if 0 -//TODO: arm32 asm (also adapt for x86?) -static void sp_256_mont_reduce_8(sp_digit* a, sp_digit* m, sp_digit mp) -{ - sp_digit ca = 0; - - asm volatile ( - # i = 0 - mov r12, #0 - ldr r10, [%[a], #0] - ldr r14, [%[a], #4] -1: - # mu = a[i] * mp - mul r8, %[mp], r10 - # a[i+0] += m[0] * mu - ldr r7, [%[m], #0] - ldr r9, [%[a], #0] - umull r6, r7, r8, r7 - adds r10, r10, r6 - adc r5, r7, #0 - # a[i+1] += m[1] * mu - ldr r7, [%[m], #4] - ldr r9, [%[a], #4] - umull r6, r7, r8, r7 - adds r10, r14, r6 - adc r4, r7, #0 - adds r10, r10, r5 - adc r4, r4, #0 - # a[i+2] += m[2] * mu - ldr r7, [%[m], #8] - ldr r14, [%[a], #8] - umull r6, r7, r8, r7 - adds r14, r14, r6 - adc r5, r7, #0 - adds r14, r14, r4 - adc r5, r5, #0 - # a[i+3] += m[3] * mu - ldr r7, [%[m], #12] - ldr r9, [%[a], #12] - umull r6, r7, r8, r7 - adds r9, r9, r6 - adc r4, r7, #0 - adds r9, r9, r5 - str r9, [%[a], #12] - adc r4, r4, #0 - # a[i+4] += m[4] * mu - ldr r7, [%[m], #16] - ldr r9, [%[a], #16] - umull r6, r7, r8, r7 - adds r9, r9, r6 - adc r5, r7, #0 - adds r9, r9, r4 - str r9, [%[a], #16] - adc r5, r5, #0 - # a[i+5] += m[5] * mu - ldr r7, [%[m], #20] - ldr r9, [%[a], #20] - umull r6, r7, r8, r7 - adds r9, r9, r6 - adc r4, r7, #0 - adds r9, r9, r5 - str r9, [%[a], #20] - adc r4, r4, #0 - # a[i+6] += m[6] * mu - ldr r7, [%[m], #24] - ldr r9, [%[a], #24] - umull r6, r7, r8, r7 - adds r9, r9, r6 - adc r5, r7, #0 - adds r9, r9, r4 - str r9, [%[a], #24] - adc r5, r5, #0 - # a[i+7] += m[7] * mu - ldr r7, [%[m], #28] - ldr r9, [%[a], #28] - umull r6, r7, r8, r7 - adds r5, r5, r6 - adcs r7, r7, %[ca] - mov %[ca], #0 - adc %[ca], %[ca], %[ca] - adds r9, r9, r5 - str r9, [%[a], #28] - ldr r9, [%[a], #32] - adcs r9, r9, r7 - str r9, [%[a], #32] - adc %[ca], %[ca], #0 - # i += 1 - add %[a], %[a], #4 - add r12, r12, #4 - cmp r12, #32 - blt 1b - - str r10, [%[a], #0] - str r14, [%[a], #4] - : [ca] "+r" (ca), [a] "+r" (a) - : [m] "r" (m), [mp] "r" (mp) - : "memory", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r12", "r14" - ); - - memcpy(a, a + 8, 32); - if (ca) - a -= m; -} -#endif /* Multiply two Montogmery form numbers mod the modulus (prime). * (r = a * b mod m) * * r Result of multiplication. + * Should be [16] array (512 bits), but high half is cleared to zeros (used as scratch pad). * a First number to multiply in Montogmery form. * b Second number to multiply in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ -static void sp_256_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b +static void sp_256to512z_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b /*, const sp_digit* m, sp_digit mp*/) { //const sp_digit* m = p256_mod; //sp_digit mp = p256_mp_mod; - sp_256_mul_8(r, a, b); - sp_256_mont_reduce_8(r /*, m, mp*/); + sp_256to512_mul_8(r, a, b); + sp_512to256_mont_reduce_8(r /*, m, mp*/); } /* Square the Montgomery form number. (r = a * a mod m) * * r Result of squaring. + * Should be [16] array (512 bits), but high half is cleared to zeros (used as scratch pad). * a Number to square in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ -static void sp_256_mont_sqr_8(sp_digit* r, const sp_digit* a +static void sp_256to512z_mont_sqr_8(sp_digit* r, const sp_digit* a /*, const sp_digit* m, sp_digit mp*/) { //const sp_digit* m = p256_mod; //sp_digit mp = p256_mp_mod; - sp_256_mont_mul_8(r, a, a /*, m, mp*/); + sp_256to512z_mont_mul_8(r, a, a /*, m, mp*/); } /* Invert the number, in Montgomery form, modulo the modulus (prime) of the @@ -1068,15 +973,15 @@ static const uint32_t p256_mod_2[8] = { #endif static void sp_256_mont_inv_8(sp_digit* r, sp_digit* a) { - sp_digit t[2*8]; //can be just [8]? + sp_digit t[2*8]; int i; memcpy(t, a, sizeof(sp_digit) * 8); for (i = 254; i >= 0; i--) { - sp_256_mont_sqr_8(t, t /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_sqr_8(t, t /*, p256_mod, p256_mp_mod*/); /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/ if (i >= 224 || i == 192 || (i <= 95 && i != 1)) - sp_256_mont_mul_8(t, t, a /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t, t, a /*, p256_mod, p256_mp_mod*/); } memcpy(r, t, sizeof(sp_digit) * 8); } @@ -1152,22 +1057,22 @@ static void sp_256_map_8(sp_point* r, sp_point* p) sp_256_mont_inv_8(t1, p->z); - sp_256_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/); - sp_256_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/); /* x /= z^2 */ - sp_256_mont_mul_8(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/); memset(r->x + 8, 0, sizeof(r->x) / 2); - sp_256_mont_reduce_8(r->x /*, p256_mod, p256_mp_mod*/); + sp_512to256_mont_reduce_8(r->x /*, p256_mod, p256_mp_mod*/); /* Reduce x to less than modulus */ if (sp_256_cmp_8(r->x, p256_mod) >= 0) sp_256_sub_8_p256_mod(r->x); sp_256_norm_8(r->x); /* y /= z^3 */ - sp_256_mont_mul_8(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/); memset(r->y + 8, 0, sizeof(r->y) / 2); - sp_256_mont_reduce_8(r->y /*, p256_mod, p256_mp_mod*/); + sp_512to256_mont_reduce_8(r->y /*, p256_mod, p256_mp_mod*/); /* Reduce y to less than modulus */ if (sp_256_cmp_8(r->y, p256_mod) >= 0) sp_256_sub_8_p256_mod(r->y); @@ -1202,9 +1107,9 @@ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) } /* T1 = Z * Z */ - sp_256_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/); /* Z = Y * Z */ - sp_256_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/); /* Z = 2Z */ sp_256_mont_dbl_8(r->z, r->z /*, p256_mod*/); /* T2 = X - T1 */ @@ -1212,21 +1117,21 @@ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) /* T1 = X + T1 */ sp_256_mont_add_8(t1, r->x, t1 /*, p256_mod*/); /* T2 = T1 * T2 */ - sp_256_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/); /* T1 = 3T2 */ sp_256_mont_tpl_8(t1, t2 /*, p256_mod*/); /* Y = 2Y */ sp_256_mont_dbl_8(r->y, r->y /*, p256_mod*/); /* Y = Y * Y */ - sp_256_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/); /* T2 = Y * Y */ - sp_256_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/); /* T2 = T2/2 */ sp_256_div2_8(t2, t2, p256_mod); /* Y = Y * X */ - sp_256_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/); /* X = T1 * T1 */ - sp_256_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/); /* X = X - Y */ sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/); /* X = X - Y */ @@ -1234,7 +1139,7 @@ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) /* Y = Y - X */ sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/); /* Y = Y * T1 */ - sp_256_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/); /* Y = Y - T2 */ sp_256_mont_sub_8(r->y, r->y, t2 /*, p256_mod*/); dump_512("y2 %s\n", r->y); @@ -1279,36 +1184,36 @@ static NOINLINE void sp_256_proj_point_add_8(sp_point* r, sp_point* p, sp_point* } /* U1 = X1*Z2^2 */ - sp_256_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/); - sp_256_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/); - sp_256_mont_mul_8(t1, t1, r->x /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t1, t1, r->x /*, p256_mod, p256_mp_mod*/); /* U2 = X2*Z1^2 */ - sp_256_mont_sqr_8(t2, r->z /*, p256_mod, p256_mp_mod*/); - sp_256_mont_mul_8(t4, t2, r->z /*, p256_mod, p256_mp_mod*/); - sp_256_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_sqr_8(t2, r->z /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t4, t2, r->z /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/); /* S1 = Y1*Z2^3 */ - sp_256_mont_mul_8(t3, t3, r->y /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t3, t3, r->y /*, p256_mod, p256_mp_mod*/); /* S2 = Y2*Z1^3 */ - sp_256_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/); /* H = U2 - U1 */ sp_256_mont_sub_8(t2, t2, t1 /*, p256_mod*/); /* R = S2 - S1 */ sp_256_mont_sub_8(t4, t4, t3 /*, p256_mod*/); /* Z3 = H*Z1*Z2 */ - sp_256_mont_mul_8(r->z, r->z, q->z /*, p256_mod, p256_mp_mod*/); - sp_256_mont_mul_8(r->z, r->z, t2 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(r->z, r->z, q->z /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(r->z, r->z, t2 /*, p256_mod, p256_mp_mod*/); /* X3 = R^2 - H^3 - 2*U1*H^2 */ - sp_256_mont_sqr_8(r->x, t4 /*, p256_mod, p256_mp_mod*/); - sp_256_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/); - sp_256_mont_mul_8(r->y, t1, t5 /*, p256_mod, p256_mp_mod*/); - sp_256_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_sqr_8(r->x, t4 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(r->y, t1, t5 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/); sp_256_mont_sub_8(r->x, r->x, t5 /*, p256_mod*/); sp_256_mont_dbl_8(t1, r->y /*, p256_mod*/); sp_256_mont_sub_8(r->x, r->x, t1 /*, p256_mod*/); /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/); - sp_256_mont_mul_8(r->y, r->y, t4 /*, p256_mod, p256_mp_mod*/); - sp_256_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(r->y, r->y, t4 /*, p256_mod, p256_mp_mod*/); + sp_256to512z_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/); sp_256_mont_sub_8(r->y, r->y, t5 /*, p256_mod*/); } |