1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/* SHA256 and SHA512-based Unix crypt implementation.
* Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
*/
/* Prefix for optional rounds specification. */
static const char str_rounds[] = "rounds=%u$";
/* Maximum salt string length. */
#define SALT_LEN_MAX 16
/* Default number of rounds if not explicitly specified. */
#define ROUNDS_DEFAULT 5000
/* Minimum number of rounds. */
#define ROUNDS_MIN 1000
/* Maximum number of rounds. */
#define ROUNDS_MAX 999999999
static char *
NOINLINE
sha_crypt(/*const*/ char *key_data, /*const*/ char *salt_data)
{
void (*sha_begin)(void *ctx) FAST_FUNC;
void (*sha_hash)(const void *buffer, size_t len, void *ctx) FAST_FUNC;
void* (*sha_end)(void *resbuf, void *ctx) FAST_FUNC;
int _32or64;
char *result, *resptr;
/* btw, sha256 needs [32] and uint32_t only */
unsigned char alt_result[64] __attribute__((__aligned__(__alignof__(uint64_t))));
unsigned char temp_result[64] __attribute__((__aligned__(__alignof__(uint64_t))));
union {
sha256_ctx_t x;
sha512_ctx_t y;
} ctx;
union {
sha256_ctx_t x;
sha512_ctx_t y;
} alt_ctx;
unsigned salt_len;
unsigned key_len;
unsigned cnt;
unsigned rounds;
char *cp;
char is_sha512;
/* Analyze salt, construct already known part of result */
cnt = strlen(salt_data) + 1 + 43 + 1;
is_sha512 = salt_data[1];
if (is_sha512 == '6')
cnt += 43;
result = resptr = xzalloc(cnt); /* will provide NUL terminator */
*resptr++ = '$';
*resptr++ = is_sha512;
*resptr++ = '$';
rounds = ROUNDS_DEFAULT;
salt_data += 3;
if (strncmp(salt_data, str_rounds, 7) == 0) {
/* 7 == strlen("rounds=") */
char *endp;
cnt = bb_strtou(salt_data + 7, &endp, 10);
if (*endp == '$') {
salt_data = endp + 1;
rounds = cnt;
if (rounds < ROUNDS_MIN)
rounds = ROUNDS_MIN;
if (rounds > ROUNDS_MAX)
rounds = ROUNDS_MAX;
/* add "rounds=NNNNN$" to result */
resptr += sprintf(resptr, str_rounds, rounds);
}
}
salt_len = strchrnul(salt_data, '$') - salt_data;
if (salt_len > SALT_LEN_MAX)
salt_len = SALT_LEN_MAX;
/* xstrdup assures suitable alignment; also we will use it
as a scratch space later. */
salt_data = xstrndup(salt_data, salt_len);
/* add "salt$" to result */
strcpy(resptr, salt_data);
resptr += salt_len;
*resptr++ = '$';
/* key data doesn't need much processing */
key_len = strlen(key_data);
key_data = xstrdup(key_data);
/* Which flavor of SHAnnn ops to use? */
sha_begin = (void*)sha256_begin;
sha_hash = (void*)sha256_hash;
sha_end = (void*)sha256_end;
_32or64 = 32;
if (is_sha512 == '6') {
sha_begin = (void*)sha512_begin;
sha_hash = (void*)sha512_hash;
sha_end = (void*)sha512_end;
_32or64 = 64;
}
/* Add KEY, SALT. */
sha_begin(&ctx);
sha_hash(key_data, key_len, &ctx);
sha_hash(salt_data, salt_len, &ctx);
/* Compute alternate SHA sum with input KEY, SALT, and KEY.
The final result will be added to the first context. */
sha_begin(&alt_ctx);
sha_hash(key_data, key_len, &alt_ctx);
sha_hash(salt_data, salt_len, &alt_ctx);
sha_hash(key_data, key_len, &alt_ctx);
sha_end(alt_result, &alt_ctx);
/* Add result of this to the other context. */
/* Add for any character in the key one byte of the alternate sum. */
for (cnt = key_len; cnt > _32or64; cnt -= _32or64)
sha_hash(alt_result, _32or64, &ctx);
sha_hash(alt_result, cnt, &ctx);
/* Take the binary representation of the length of the key and for every
1 add the alternate sum, for every 0 the key. */
for (cnt = key_len; cnt != 0; cnt >>= 1)
if ((cnt & 1) != 0)
sha_hash(alt_result, _32or64, &ctx);
else
sha_hash(key_data, key_len, &ctx);
/* Create intermediate result. */
sha_end(alt_result, &ctx);
/* Start computation of P byte sequence. */
/* For every character in the password add the entire password. */
sha_begin(&alt_ctx);
for (cnt = 0; cnt < key_len; ++cnt)
sha_hash(key_data, key_len, &alt_ctx);
sha_end(temp_result, &alt_ctx);
/* NB: past this point, raw key_data is not used anymore */
/* Create byte sequence P. */
#define p_bytes key_data /* reuse the buffer as it is of the key_len size */
cp = p_bytes; /* was: ... = alloca(key_len); */
for (cnt = key_len; cnt >= _32or64; cnt -= _32or64) {
cp = memcpy(cp, temp_result, _32or64);
cp += _32or64;
}
memcpy(cp, temp_result, cnt);
/* Start computation of S byte sequence. */
/* For every character in the password add the entire password. */
sha_begin(&alt_ctx);
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
sha_hash(salt_data, salt_len, &alt_ctx);
sha_end(temp_result, &alt_ctx);
/* NB: past this point, raw salt_data is not used anymore */
/* Create byte sequence S. */
#define s_bytes salt_data /* reuse the buffer as it is of the salt_len size */
cp = s_bytes; /* was: ... = alloca(salt_len); */
for (cnt = salt_len; cnt >= _32or64; cnt -= _32or64) {
cp = memcpy(cp, temp_result, _32or64);
cp += _32or64;
}
memcpy(cp, temp_result, cnt);
/* Repeatedly run the collected hash value through SHA to burn
CPU cycles. */
for (cnt = 0; cnt < rounds; ++cnt) {
sha_begin(&ctx);
/* Add key or last result. */
if ((cnt & 1) != 0)
sha_hash(p_bytes, key_len, &ctx);
else
sha_hash(alt_result, _32or64, &ctx);
/* Add salt for numbers not divisible by 3. */
if (cnt % 3 != 0)
sha_hash(s_bytes, salt_len, &ctx);
/* Add key for numbers not divisible by 7. */
if (cnt % 7 != 0)
sha_hash(p_bytes, key_len, &ctx);
/* Add key or last result. */
if ((cnt & 1) != 0)
sha_hash(alt_result, _32or64, &ctx);
else
sha_hash(p_bytes, key_len, &ctx);
sha_end(alt_result, &ctx);
}
/* Append encrypted password to result buffer */
//TODO: replace with something like
// bb_uuencode(cp, src, length, bb_uuenc_tbl_XXXbase64);
#define b64_from_24bit(B2, B1, B0, N) \
do { \
unsigned w = ((B2) << 16) | ((B1) << 8) | (B0); \
resptr = to64(resptr, w, N); \
} while (0)
if (is_sha512 == '5') {
int i = 0;
int j = 10;
int k = 20;
while (1) {
b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
if (i == 9)
break;
/* if x - 9 produces < 0, subtract 2 more:
* ((i >> 8) << 1) is either 0 or binary 111111...1110 */
i -= 9; i = (i & 0x1f) + ((i >> 8) << 1);
j -= 9; j = (j & 0x1f) + ((j >> 8) << 1);
k -= 9; k = (k & 0x1f) + ((k >> 8) << 1);
}
b64_from_24bit(0, alt_result[31], alt_result[30], 3);
/* was:
b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
b64_from_24bit(0, alt_result[31], alt_result[30], 3);
*/
} else {
unsigned i = 0;
unsigned j = 21;
unsigned k = 42;
while (1) {
b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
if (i == 62)
break;
i += 22; i = ((i >> 6) + i) & 0x3f;
j += 22; j = ((j >> 6) + j) & 0x3f;
k += 22; k = ((k >> 6) + k) & 0x3f;
}
b64_from_24bit(0, 0, alt_result[63], 2);
/* was:
b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4);
b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4);
b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4);
b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4);
b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4);
b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4);
b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4);
b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4);
b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4);
b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4);
b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4);
b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4);
b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4);
b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4);
b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4);
b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4);
b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4);
b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4);
b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4);
b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4);
b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4);
b64_from_24bit(0, 0, alt_result[63], 2);
*/
}
/* *resptr = '\0'; - xzalloc did it */
#undef b64_from_24bit
/* Clear the buffer for the intermediate result so that people
attaching to processes or reading core dumps cannot get any
information. */
memset(temp_result, 0, sizeof(temp_result));
memset(alt_result, 0, sizeof(alt_result));
memset(&ctx, 0, sizeof(ctx));
memset(&alt_ctx, 0, sizeof(alt_ctx));
memset(key_data, 0, key_len); /* also p_bytes */
memset(salt_data, 0, salt_len); /* also s_bytes */
free(key_data);
free(salt_data);
#undef p_bytes
#undef s_bytes
return result;
}
|