summaryrefslogtreecommitdiff
path: root/libbb/hash_fd.c
blob: 3445a25a0abb8713ca8f31a62e6571bead683406 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
/*
 *  Based on shasum from http://www.netsw.org/crypto/hash/
 *  Majorly hacked up to use Dr Brian Gladman's sha1 code
 *
 *  Copyright (C) 2003 Glenn L. McGrath
 *  Copyright (C) 2003 Erik Andersen
 *
 * Licensed under the GPL v2 or later, see the file LICENSE in this tarball.
 */

#include <byteswap.h>
#include <endian.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "busybox.h"


#ifdef CONFIG_SHA1SUM
/*
 ---------------------------------------------------------------------------
 Begin Dr. Gladman's sha1 code
 ---------------------------------------------------------------------------
*/

/*
 ---------------------------------------------------------------------------
 Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software in both source and binary
 form is allowed (with or without changes) provided that:

   1. distributions of this source code include the above copyright
      notice, this list of conditions and the following disclaimer;

   2. distributions in binary form include the above copyright
      notice, this list of conditions and the following disclaimer
      in the documentation and/or other associated materials;

   3. the copyright holder's name is not used to endorse products
      built using this software without specific written permission.

 ALTERNATIVELY, provided that this notice is retained in full, this product
 may be distributed under the terms of the GNU General Public License (GPL),
 in which case the provisions of the GPL apply INSTEAD OF those given above.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 10/11/2002

 This is a byte oriented version of SHA1 that operates on arrays of bytes
 stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
*/

# define SHA1_BLOCK_SIZE  64
# define SHA1_DIGEST_SIZE 20
# define SHA1_HASH_SIZE   SHA1_DIGEST_SIZE
# define SHA2_GOOD        0
# define SHA2_BAD         1

# define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))

# if __BYTE_ORDER == __BIG_ENDIAN
#  define swap_b32(x) (x)
# elif defined(bswap_32)
#  define swap_b32(x) bswap_32(x)
# else
#  define swap_b32(x) ((rotl32((x), 8) & 0x00ff00ff) | (rotl32((x), 24) & 0xff00ff00))
# endif /* __BYTE_ORDER */

# define SHA1_MASK   (SHA1_BLOCK_SIZE - 1)

/* reverse byte order in 32-bit words   */
#define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
#define parity(x,y,z)   ((x) ^ (y) ^ (z))
#define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) | (y))))

/* A normal version as set out in the FIPS. This version uses   */
/* partial loop unrolling and is optimised for the Pentium 4    */
# define rnd(f,k)    \
    t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
    e = d; d = c; c = rotl32(b, 30); b = t

/* type to hold the SHA1 context  */
struct sha1_ctx_t {
	uint32_t count[2];
	uint32_t hash[5];
	uint32_t wbuf[16];
};

static void sha1_compile(struct sha1_ctx_t *ctx)
{
	uint32_t w[80], i, a, b, c, d, e, t;

	/* note that words are compiled from the buffer into 32-bit */
	/* words in big-endian order so an order reversal is needed */
	/* here on little endian machines                           */
	for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
		w[i] = swap_b32(ctx->wbuf[i]);

	for (i = SHA1_BLOCK_SIZE / 4; i < 80; ++i)
		w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1);

	a = ctx->hash[0];
	b = ctx->hash[1];
	c = ctx->hash[2];
	d = ctx->hash[3];
	e = ctx->hash[4];

	for (i = 0; i < 20; ++i) {
		rnd(ch, 0x5a827999);
	}

	for (i = 20; i < 40; ++i) {
		rnd(parity, 0x6ed9eba1);
	}

	for (i = 40; i < 60; ++i) {
		rnd(maj, 0x8f1bbcdc);
	}

	for (i = 60; i < 80; ++i) {
		rnd(parity, 0xca62c1d6);
	}

	ctx->hash[0] += a;
	ctx->hash[1] += b;
	ctx->hash[2] += c;
	ctx->hash[3] += d;
	ctx->hash[4] += e;
}

static void sha1_begin(struct sha1_ctx_t *ctx)
{
	ctx->count[0] = ctx->count[1] = 0;
	ctx->hash[0] = 0x67452301;
	ctx->hash[1] = 0xefcdab89;
	ctx->hash[2] = 0x98badcfe;
	ctx->hash[3] = 0x10325476;
	ctx->hash[4] = 0xc3d2e1f0;
}

/* SHA1 hash data in an array of bytes into hash buffer and call the        */
/* hash_compile function as required.                                       */
static void sha1_hash(const void *data, size_t len, void *ctx_v)
{
	struct sha1_ctx_t *ctx = (struct sha1_ctx_t *) ctx_v;
	uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK);
	uint32_t freeb = SHA1_BLOCK_SIZE - pos;
	const unsigned char *sp = data;

	if ((ctx->count[0] += len) < len)
		++(ctx->count[1]);

	while (len >= freeb) {	/* tranfer whole blocks while possible  */
		memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb);
		sp += freeb;
		len -= freeb;
		freeb = SHA1_BLOCK_SIZE;
		pos = 0;
		sha1_compile(ctx);
	}

	memcpy(((unsigned char *) ctx->wbuf) + pos, sp, len);
}

/* SHA1 Final padding and digest calculation  */
# if __BYTE_ORDER == __LITTLE_ENDIAN
static uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
static uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
# else
static uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
static uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
# endif /* __BYTE_ORDER */

static void sha1_end(unsigned char hval[], struct sha1_ctx_t *ctx)
{
	uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK);

	/* mask out the rest of any partial 32-bit word and then set    */
	/* the next byte to 0x80. On big-endian machines any bytes in   */
	/* the buffer will be at the top end of 32 bit words, on little */
	/* endian machines they will be at the bottom. Hence the AND    */
	/* and OR masks above are reversed for little endian systems    */
	ctx->wbuf[cnt >> 2] =
		(ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];

	/* we need 9 or more empty positions, one for the padding byte  */
	/* (above) and eight for the length count.  If there is not     */
	/* enough space pad and empty the buffer                        */
	if (cnt > SHA1_BLOCK_SIZE - 9) {
		if (cnt < 60)
			ctx->wbuf[15] = 0;
		sha1_compile(ctx);
		cnt = 0;
	} else				/* compute a word index for the empty buffer positions  */
		cnt = (cnt >> 2) + 1;

	while (cnt < 14)	/* and zero pad all but last two positions      */
		ctx->wbuf[cnt++] = 0;

	/* assemble the eight byte counter in the buffer in big-endian  */
	/* format                                                       */

	ctx->wbuf[14] = swap_b32((ctx->count[1] << 3) | (ctx->count[0] >> 29));
	ctx->wbuf[15] = swap_b32(ctx->count[0] << 3);

	sha1_compile(ctx);

	/* extract the hash value as bytes in case the hash buffer is   */
	/* misaligned for 32-bit words                                  */

	for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
		hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3));
}

/*
 ---------------------------------------------------------------------------
 End of Dr. Gladman's sha1 code
 ---------------------------------------------------------------------------
*/
#endif	/* CONFIG_SHA1 */





#ifdef CONFIG_MD5SUM
/*
 * md5sum.c - Compute MD5 checksum of files or strings according to the
 *            definition of MD5 in RFC 1321 from April 1992.
 *
 * Copyright (C) 1995-1999 Free Software Foundation, Inc.
 * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
 *
 *
 * June 29, 2001        Manuel Novoa III
 *
 * Added MD5SUM_SIZE_VS_SPEED configuration option.
 *
 * Current valid values, with data from my system for comparison, are:
 *   (using uClibc and running on linux-2.4.4.tar.bz2)
 *                     user times (sec)  text size (386)
 *     0 (fastest)         1.1                6144
 *     1                   1.4                5392
 *     2                   3.0                5088
 *     3 (smallest)        5.1                4912
 */

# if CONFIG_MD5SUM_SIZE_VS_SPEED < 0 || CONFIG_MD5SUM_SIZE_VS_SPEED > 3
# define MD5SUM_SIZE_VS_SPEED 2
# else
# define MD5SUM_SIZE_VS_SPEED CONFIG_MD5SUM_SIZE_VS_SPEED
# endif

/* Handle endian-ness */
# if __BYTE_ORDER == __LITTLE_ENDIAN
#  define SWAP(n) (n)
# elif defined(bswap_32)
#  define SWAP(n) bswap_32(n)
# else
#  define SWAP(n) ((n << 24) | ((n&65280)<<8) | ((n&16711680)>>8) | (n>>24))
# endif

# if MD5SUM_SIZE_VS_SPEED == 0
/* This array contains the bytes used to pad the buffer to the next
   64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */  };
# endif	/* MD5SUM_SIZE_VS_SPEED == 0 */

/* Structure to save state of computation between the single steps.  */
struct md5_ctx_t {
	uint32_t A;
	uint32_t B;
	uint32_t C;
	uint32_t D;
	uint32_t total[2];
	uint32_t buflen;
	char buffer[128];
};

/* Initialize structure containing state of computation.
 * (RFC 1321, 3.3: Step 3)
 */
static void md5_begin(struct md5_ctx_t *ctx)
{
	ctx->A = 0x67452301;
	ctx->B = 0xefcdab89;
	ctx->C = 0x98badcfe;
	ctx->D = 0x10325476;

	ctx->total[0] = ctx->total[1] = 0;
	ctx->buflen = 0;
}

/* These are the four functions used in the four steps of the MD5 algorithm
 * and defined in the RFC 1321.  The first function is a little bit optimized
 * (as found in Colin Plumbs public domain implementation).
 * #define FF(b, c, d) ((b & c) | (~b & d))
 */
# define FF(b, c, d) (d ^ (b & (c ^ d)))
# define FG(b, c, d) FF (d, b, c)
# define FH(b, c, d) (b ^ c ^ d)
# define FI(b, c, d) (c ^ (b | ~d))

/* Starting with the result of former calls of this function (or the
 * initialization function update the context for the next LEN bytes
 * starting at BUFFER.
 * It is necessary that LEN is a multiple of 64!!!
 */
static void md5_hash_block(const void *buffer, size_t len, struct md5_ctx_t *ctx)
{
	uint32_t correct_words[16];
	const uint32_t *words = buffer;
	size_t nwords = len / sizeof(uint32_t);
	const uint32_t *endp = words + nwords;

# if MD5SUM_SIZE_VS_SPEED > 0
	static const uint32_t C_array[] = {
		/* round 1 */
		0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
		0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
		0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
		0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
		/* round 2 */
		0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
		0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8,
		0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
		0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
		/* round 3 */
		0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
		0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
		0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
		0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
		/* round 4 */
		0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
		0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
		0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
		0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
	};

	static const char P_array[] = {
#  if MD5SUM_SIZE_VS_SPEED > 1
		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,	/* 1 */
#  endif	/* MD5SUM_SIZE_VS_SPEED > 1 */
		1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12,	/* 2 */
		5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2,	/* 3 */
		0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9	/* 4 */
	};

#  if MD5SUM_SIZE_VS_SPEED > 1
	static const char S_array[] = {
		7, 12, 17, 22,
		5, 9, 14, 20,
		4, 11, 16, 23,
		6, 10, 15, 21
	};
#  endif	/* MD5SUM_SIZE_VS_SPEED > 1 */
# endif

	uint32_t A = ctx->A;
	uint32_t B = ctx->B;
	uint32_t C = ctx->C;
	uint32_t D = ctx->D;

	/* First increment the byte count.  RFC 1321 specifies the possible
	   length of the file up to 2^64 bits.  Here we only compute the
	   number of bytes.  Do a double word increment.  */
	ctx->total[0] += len;
	if (ctx->total[0] < len)
		++ctx->total[1];

	/* Process all bytes in the buffer with 64 bytes in each round of
	   the loop.  */
	while (words < endp) {
		uint32_t *cwp = correct_words;
		uint32_t A_save = A;
		uint32_t B_save = B;
		uint32_t C_save = C;
		uint32_t D_save = D;

# if MD5SUM_SIZE_VS_SPEED > 1
#  define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))

		const uint32_t *pc;
		const char *pp;
		const char *ps;
		int i;
		uint32_t temp;

		for (i = 0; i < 16; i++) {
			cwp[i] = SWAP(words[i]);
		}
		words += 16;

#  if MD5SUM_SIZE_VS_SPEED > 2
		pc = C_array;
		pp = P_array;
		ps = S_array - 4;

		for (i = 0; i < 64; i++) {
			if ((i & 0x0f) == 0)
				ps += 4;
			temp = A;
			switch (i >> 4) {
			case 0:
				temp += FF(B, C, D);
				break;
			case 1:
				temp += FG(B, C, D);
				break;
			case 2:
				temp += FH(B, C, D);
				break;
			case 3:
				temp += FI(B, C, D);
			}
			temp += cwp[(int) (*pp++)] + *pc++;
			CYCLIC(temp, ps[i & 3]);
			temp += B;
			A = D;
			D = C;
			C = B;
			B = temp;
		}
#  else
		pc = C_array;
		pp = P_array;
		ps = S_array;

		for (i = 0; i < 16; i++) {
			temp = A + FF(B, C, D) + cwp[(int) (*pp++)] + *pc++;
			CYCLIC(temp, ps[i & 3]);
			temp += B;
			A = D;
			D = C;
			C = B;
			B = temp;
		}

		ps += 4;
		for (i = 0; i < 16; i++) {
			temp = A + FG(B, C, D) + cwp[(int) (*pp++)] + *pc++;
			CYCLIC(temp, ps[i & 3]);
			temp += B;
			A = D;
			D = C;
			C = B;
			B = temp;
		}
		ps += 4;
		for (i = 0; i < 16; i++) {
			temp = A + FH(B, C, D) + cwp[(int) (*pp++)] + *pc++;
			CYCLIC(temp, ps[i & 3]);
			temp += B;
			A = D;
			D = C;
			C = B;
			B = temp;
		}
		ps += 4;
		for (i = 0; i < 16; i++) {
			temp = A + FI(B, C, D) + cwp[(int) (*pp++)] + *pc++;
			CYCLIC(temp, ps[i & 3]);
			temp += B;
			A = D;
			D = C;
			C = B;
			B = temp;
		}

#  endif	/* MD5SUM_SIZE_VS_SPEED > 2 */
# else
		/* First round: using the given function, the context and a constant
		   the next context is computed.  Because the algorithms processing
		   unit is a 32-bit word and it is determined to work on words in
		   little endian byte order we perhaps have to change the byte order
		   before the computation.  To reduce the work for the next steps
		   we store the swapped words in the array CORRECT_WORDS.  */

#  define OP(a, b, c, d, s, T)	\
      do	\
        {	\
	  a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T;	\
	  ++words;	\
	  CYCLIC (a, s);	\
	  a += b;	\
        }	\
      while (0)

		/* It is unfortunate that C does not provide an operator for
		   cyclic rotation.  Hope the C compiler is smart enough.  */
		/* gcc 2.95.4 seems to be --aaronl */
#  define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))

		/* Before we start, one word to the strange constants.
		   They are defined in RFC 1321 as

		   T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
		 */

#  if MD5SUM_SIZE_VS_SPEED == 1
		const uint32_t *pc;
		const char *pp;
		int i;
#  endif	/* MD5SUM_SIZE_VS_SPEED */

		/* Round 1.  */
#  if MD5SUM_SIZE_VS_SPEED == 1
		pc = C_array;
		for (i = 0; i < 4; i++) {
			OP(A, B, C, D, 7, *pc++);
			OP(D, A, B, C, 12, *pc++);
			OP(C, D, A, B, 17, *pc++);
			OP(B, C, D, A, 22, *pc++);
		}
#  else
		OP(A, B, C, D, 7, 0xd76aa478);
		OP(D, A, B, C, 12, 0xe8c7b756);
		OP(C, D, A, B, 17, 0x242070db);
		OP(B, C, D, A, 22, 0xc1bdceee);
		OP(A, B, C, D, 7, 0xf57c0faf);
		OP(D, A, B, C, 12, 0x4787c62a);
		OP(C, D, A, B, 17, 0xa8304613);
		OP(B, C, D, A, 22, 0xfd469501);
		OP(A, B, C, D, 7, 0x698098d8);
		OP(D, A, B, C, 12, 0x8b44f7af);
		OP(C, D, A, B, 17, 0xffff5bb1);
		OP(B, C, D, A, 22, 0x895cd7be);
		OP(A, B, C, D, 7, 0x6b901122);
		OP(D, A, B, C, 12, 0xfd987193);
		OP(C, D, A, B, 17, 0xa679438e);
		OP(B, C, D, A, 22, 0x49b40821);
#  endif	/* MD5SUM_SIZE_VS_SPEED == 1 */

		/* For the second to fourth round we have the possibly swapped words
		   in CORRECT_WORDS.  Redefine the macro to take an additional first
		   argument specifying the function to use.  */
#  undef OP
#  define OP(f, a, b, c, d, k, s, T)	\
      do	\
	{	\
	  a += f (b, c, d) + correct_words[k] + T;	\
	  CYCLIC (a, s);	\
	  a += b;	\
	}	\
      while (0)

		/* Round 2.  */
#  if MD5SUM_SIZE_VS_SPEED == 1
		pp = P_array;
		for (i = 0; i < 4; i++) {
			OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
			OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
			OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
			OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
		}
#  else
		OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
		OP(FG, D, A, B, C, 6, 9, 0xc040b340);
		OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
		OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
		OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
		OP(FG, D, A, B, C, 10, 9, 0x02441453);
		OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
		OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
		OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
		OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
		OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
		OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
		OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
		OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
		OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
		OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
#  endif	/* MD5SUM_SIZE_VS_SPEED == 1 */

		/* Round 3.  */
#  if MD5SUM_SIZE_VS_SPEED == 1
		for (i = 0; i < 4; i++) {
			OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
			OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
			OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
			OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
		}
#  else
		OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
		OP(FH, D, A, B, C, 8, 11, 0x8771f681);
		OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
		OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
		OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
		OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
		OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
		OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
		OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
		OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
		OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
		OP(FH, B, C, D, A, 6, 23, 0x04881d05);
		OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
		OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
		OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
		OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
#  endif	/* MD5SUM_SIZE_VS_SPEED == 1 */

		/* Round 4.  */
#  if MD5SUM_SIZE_VS_SPEED == 1
		for (i = 0; i < 4; i++) {
			OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
			OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
			OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
			OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
		}
#  else
		OP(FI, A, B, C, D, 0, 6, 0xf4292244);
		OP(FI, D, A, B, C, 7, 10, 0x432aff97);
		OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
		OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
		OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
		OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
		OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
		OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
		OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
		OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
		OP(FI, C, D, A, B, 6, 15, 0xa3014314);
		OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
		OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
		OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
		OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
		OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
#  endif	/* MD5SUM_SIZE_VS_SPEED == 1 */
# endif	/* MD5SUM_SIZE_VS_SPEED > 1 */

		/* Add the starting values of the context.  */
		A += A_save;
		B += B_save;
		C += C_save;
		D += D_save;
	}

	/* Put checksum in context given as argument.  */
	ctx->A = A;
	ctx->B = B;
	ctx->C = C;
	ctx->D = D;
}

/* Starting with the result of former calls of this function (or the
 * initialization function update the context for the next LEN bytes
 * starting at BUFFER.
 * It is NOT required that LEN is a multiple of 64.
 */

static void md5_hash_bytes(const void *buffer, size_t len, struct md5_ctx_t *ctx)
{
	/* When we already have some bits in our internal buffer concatenate
	   both inputs first.  */
	if (ctx->buflen != 0) {
		size_t left_over = ctx->buflen;
		size_t add = 128 - left_over > len ? len : 128 - left_over;

		memcpy(&ctx->buffer[left_over], buffer, add);
		ctx->buflen += add;

		if (left_over + add > 64) {
			md5_hash_block(ctx->buffer, (left_over + add) & ~63, ctx);
			/* The regions in the following copy operation cannot overlap.  */
			memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
				   (left_over + add) & 63);
			ctx->buflen = (left_over + add) & 63;
		}

		buffer = (const char *) buffer + add;
		len -= add;
	}

	/* Process available complete blocks.  */
	if (len > 64) {
		md5_hash_block(buffer, len & ~63, ctx);
		buffer = (const char *) buffer + (len & ~63);
		len &= 63;
	}

	/* Move remaining bytes in internal buffer.  */
	if (len > 0) {
		memcpy(ctx->buffer, buffer, len);
		ctx->buflen = len;
	}
}

static void md5_hash(const void *buffer, size_t length, void *md5_ctx)
{
	if (length % 64 == 0) {
		md5_hash_block(buffer, length, md5_ctx);
	} else {
		md5_hash_bytes(buffer, length, md5_ctx);
	}
}

/* Process the remaining bytes in the buffer and put result from CTX
 * in first 16 bytes following RESBUF.  The result is always in little
 * endian byte order, so that a byte-wise output yields to the wanted
 * ASCII representation of the message digest.
 *
 * IMPORTANT: On some systems it is required that RESBUF is correctly
 * aligned for a 32 bits value.
 */
static void *md5_end(void *resbuf, struct md5_ctx_t *ctx)
{
	/* Take yet unprocessed bytes into account.  */
	uint32_t bytes = ctx->buflen;
	size_t pad;

	/* Now count remaining bytes.  */
	ctx->total[0] += bytes;
	if (ctx->total[0] < bytes)
		++ctx->total[1];

	pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
# if MD5SUM_SIZE_VS_SPEED > 0
	memset(&ctx->buffer[bytes], 0, pad);
	ctx->buffer[bytes] = 0x80;
# else
	memcpy(&ctx->buffer[bytes], fillbuf, pad);
# endif	/* MD5SUM_SIZE_VS_SPEED > 0 */

	/* Put the 64-bit file length in *bits* at the end of the buffer.  */
	*(uint32_t *) & ctx->buffer[bytes + pad] = SWAP(ctx->total[0] << 3);
	*(uint32_t *) & ctx->buffer[bytes + pad + 4] =
		SWAP(((ctx->total[1] << 3) | (ctx->total[0] >> 29)));

	/* Process last bytes.  */
	md5_hash_block(ctx->buffer, bytes + pad + 8, ctx);

	/* Put result from CTX in first 16 bytes following RESBUF.  The result is
	 * always in little endian byte order, so that a byte-wise output yields
	 * to the wanted ASCII representation of the message digest.
	 *
	 * IMPORTANT: On some systems it is required that RESBUF is correctly
	 * aligned for a 32 bits value.
	 */
	((uint32_t *) resbuf)[0] = SWAP(ctx->A);
	((uint32_t *) resbuf)[1] = SWAP(ctx->B);
	((uint32_t *) resbuf)[2] = SWAP(ctx->C);
	((uint32_t *) resbuf)[3] = SWAP(ctx->D);

	return resbuf;
}
#endif	/* CONFIG_MD5SUM */




extern int hash_fd(int src_fd, const size_t size, const uint8_t hash_algo,
				   uint8_t * hashval)
{
	int result = EXIT_SUCCESS;
//	size_t hashed_count = 0;
	size_t blocksize = 0;
	size_t remaining = size;
	unsigned char *buffer = NULL;
	void (*hash_fn_ptr)(const void *, size_t, void *) = NULL;
	void *cx = NULL;

#ifdef CONFIG_SHA1SUM
	struct sha1_ctx_t sha1_cx;
#endif
#ifdef CONFIG_MD5SUM
	struct md5_ctx_t md5_cx;
#endif


#ifdef CONFIG_SHA1SUM
	if (hash_algo == HASH_SHA1) {
		/* Ensure that BLOCKSIZE is a multiple of 64.  */
		blocksize = 65536;
		buffer = xmalloc(blocksize);
		hash_fn_ptr = sha1_hash;
		cx = &sha1_cx;
	}
#endif
#ifdef CONFIG_MD5SUM
	if (hash_algo == HASH_MD5) {
		blocksize = 4096;
		buffer = xmalloc(blocksize + 72);
		hash_fn_ptr = md5_hash;
		cx = &md5_cx;
	}
#endif

	/* Initialize the computation context.  */
#ifdef CONFIG_SHA1SUM
	if (hash_algo == HASH_SHA1) {
		sha1_begin(&sha1_cx);
	}
#endif
#ifdef CONFIG_MD5SUM
	if (hash_algo == HASH_MD5) {
		md5_begin(&md5_cx);
	}
#endif
	/* Iterate over full file contents.  */
	while ((remaining == (size_t) -1) || (remaining > 0)) {
		size_t read_try;
		ssize_t read_got;

		if (remaining > blocksize) {
			read_try = blocksize;
		} else {
			read_try = remaining;
		}
		read_got = bb_full_read(src_fd, buffer, read_try);
		if (read_got < 1) {
			/* count == 0 means short read
			 * count == -1 means read error */
			result = read_got - 1;
			break;
		}
		if (remaining != (size_t) -1) {
			remaining -= read_got;
		}

		/* Process buffer */
		hash_fn_ptr(buffer, read_got, cx);
	}

	/* Finalize and write the hash into our buffer.  */
#ifdef CONFIG_SHA1SUM
	if (hash_algo == HASH_SHA1) {
		sha1_end(hashval, &sha1_cx);
	}
#endif
#ifdef CONFIG_MD5SUM
	if (hash_algo == HASH_MD5) {
		md5_end(hashval, &md5_cx);
	}
#endif

	free(buffer);
	return result;
}