1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
/*
* Copyright (C) 2017 Denys Vlasenko <vda.linux@googlemail.com>
*
* Licensed under GPLv2, see file LICENSE in this source tree.
*/
//config:config FACTOR
//config: bool "factor (2.7 kb)"
//config: default y
//config: help
//config: factor factorizes integers
//applet:IF_FACTOR(APPLET(factor, BB_DIR_USR_BIN, BB_SUID_DROP))
//kbuild:lib-$(CONFIG_FACTOR) += factor.o
//usage:#define factor_trivial_usage
//usage: "[NUMBER]..."
//usage:#define factor_full_usage "\n\n"
//usage: "Print prime factors"
#include "libbb.h"
#include "common_bufsiz.h"
#if 0
# define dbg(...) bb_error_msg(__VA_ARGS__)
#else
# define dbg(...) ((void)0)
#endif
typedef unsigned long long wide_t;
#if ULLONG_MAX == (UINT_MAX * UINT_MAX + 2 * UINT_MAX)
/* "unsigned" is half as wide as ullong */
typedef unsigned half_t;
#define HALF_MAX UINT_MAX
#define HALF_FMT ""
#elif ULLONG_MAX == (ULONG_MAX * ULONG_MAX + 2 * ULONG_MAX)
/* long is half as wide as ullong */
typedef unsigned long half_t;
#define HALF_MAX ULONG_MAX
#define HALF_FMT "l"
#else
#error Cant find an integer type which is half as wide as ullong
#endif
/* The trial divisor increment wheel. Use it to skip over divisors that
* are composites of 2, 3, 5, 7, or 11.
* Larger wheels improve sieving only slightly, but quickly grow in size
* (adding just one prime, 13, results in 5766 element sieve).
*/
#define R(a,b,c,d,e,f,g,h,i,j,A,B,C,D,E,F,G,H,I,J) \
(((uint64_t)(a<<0) | (b<<3) | (c<<6) | (d<<9) | (e<<12) | (f<<15) | (g<<18) | (h<<21) | (i<<24) | (j<<27)) << 1) | \
(((uint64_t)(A<<0) | (B<<3) | (C<<6) | (D<<9) | (E<<12) | (F<<15) | (G<<18) | (H<<21) | (I<<24) | (J<<27)) << 31)
#define P(a,b,c,d,e,f,g,h,i,j,A,B,C,D,E,F,G,H,I,J) \
R( (a/2),(b/2),(c/2),(d/2),(e/2),(f/2),(g/2),(h/2),(i/2),(j/2), \
(A/2),(B/2),(C/2),(D/2),(E/2),(F/2),(G/2),(H/2),(I/2),(J/2) )
static const uint64_t packed_wheel[] = {
/*1, 2, 2, 4, 2,*/
P( 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4), //01
P( 2, 4, 2, 4,14, 4, 6, 2,10, 2, 6, 6, 4, 2, 4, 6, 2,10, 2, 4), //02
P( 2,12,10, 2, 4, 2, 4, 6, 2, 6, 4, 6, 6, 6, 2, 6, 4, 2, 6, 4), //03
P( 6, 8, 4, 2, 4, 6, 8, 6,10, 2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2), //04
P( 6, 4, 2, 6,10, 2,10, 2, 4, 2, 4, 6, 8, 4, 2, 4,12, 2, 6, 4), //05
P( 2, 6, 4, 6,12, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6,10, 2), //06
P( 4, 6, 2, 6, 4, 2, 4, 2,10, 2,10, 2, 4, 6, 6, 2, 6, 6, 4, 6), //07
P( 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 6, 4, 8, 6, 4, 6, 2, 4, 6), //08
P( 8, 6, 4, 2,10, 2, 6, 4, 2, 4, 2,10, 2,10, 2, 4, 2, 4, 8, 6), //09
P( 4, 2, 4, 6, 6, 2, 6, 4, 8, 4, 6, 8, 4, 2, 4, 2, 4, 8, 6, 4), //10
P( 6, 6, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2,10, 2), //11
P( 6, 4, 6, 2, 6, 4, 2, 4, 6, 6, 8, 4, 2, 6,10, 8, 4, 2, 4, 2), //12
P( 4, 8,10, 6, 2, 4, 8, 6, 6, 4, 2, 4, 6, 2, 6, 4, 6, 2,10, 2), //13
P(10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 6, 6, 4, 6, 8), //14
P( 4, 2, 4, 2, 4, 8, 6, 4, 8, 4, 6, 2, 6, 6, 4, 2, 4, 6, 8, 4), //15
P( 2, 4, 2,10, 2,10, 2, 4, 2, 4, 6, 2,10, 2, 4, 6, 8, 6, 4, 2), //16
P( 6, 4, 6, 8, 4, 6, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6, 4, 6), //17
P( 6, 2, 6, 6, 4, 2,10, 2,10, 2, 4, 2, 4, 6, 2, 6, 4, 2,10, 6), //18
P( 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2,12, 6, 4, 6, 2, 4, 6, 2), //19
P(12, 4, 2, 4, 8, 6, 4, 2, 4, 2,10, 2,10, 6, 2, 4, 6, 2, 6, 4), //20
P( 2, 4, 6, 6, 2, 6, 4, 2,10, 6, 8, 6, 4, 2, 4, 8, 6, 4, 6, 2), //21
P( 4, 6, 2, 6, 6, 6, 4, 6, 2, 6, 4, 2, 4, 2,10,12, 2, 4, 2,10), //22
P( 2, 6, 4, 2, 4, 6, 6, 2,10, 2, 6, 4,14, 4, 2, 4, 2, 4, 8, 6), //23
P( 4, 6, 2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4,12, 2,12), //24
};
#undef P
#undef r
#define WHEEL_START 5
#define WHEEL_SIZE (5 + 24 * 20)
#define wheel_tab ((uint8_t*)&bb_common_bufsiz1)
/*
* Why, you ask?
* plain byte array:
* function old new delta
* wheel_tab - 485 +485
* 3-bit-packed insanity:
* packed_wheel - 192 +192
* factor_main 108 176 +63
*/
static void unpack_wheel(void)
{
int i;
uint8_t *p;
setup_common_bufsiz();
wheel_tab[0] = 1;
wheel_tab[1] = 2;
wheel_tab[2] = 2;
wheel_tab[3] = 4;
wheel_tab[4] = 2;
p = &wheel_tab[5];
for (i = 0; i < ARRAY_SIZE(packed_wheel); i++) {
uint64_t v = packed_wheel[i];
while ((v & 0xe) != 0) {
*p = v & 0xe;
//printf("%2u,", *p);
p++;
v >>= 3;
}
//printf("\n");
}
}
static half_t isqrt_odd(wide_t N)
{
half_t s = isqrt(N);
/* Subtract 1 from even s, odd s won't change: */
/* (doesnt work for zero, but we know that s != 0 here) */
s = (s - 1) | 1;
return s;
}
static NOINLINE void factorize(wide_t N)
{
unsigned w;
half_t factor;
half_t max_factor;
if (N < 4)
goto end;
/* The code needs to be optimized for the case where
* there are large prime factors. For example,
* this is not hard:
* 8262075252869367027 = 3 7 17 23 47 101 113 127 131 137 823
* (the largest divisor to test for largest factor 823
* is only ~sqrt(823) = 28, the entire factorization needs
* only ~33 trial divisions)
* but this is:
* 18446744073709551601 = 53 348051774975651917
* the last factor requires testing up to
* 589959129 - about 100 million iterations.
* The slowest case (largest prime) for N < 2^64 is
* factor 18446744073709551557 (0xffffffffffffffc5).
*/
max_factor = isqrt_odd(N);
factor = 2;
w = 0;
for (;;) {
half_t fw;
/* The division is the most costly part of the loop.
* On 64bit CPUs, takes at best 12 cycles, often ~20.
*/
while ((N % factor) == 0) { /* not likely */
N = N / factor;
printf(" %"HALF_FMT"u", factor);
max_factor = isqrt_odd(N);
}
if (factor >= max_factor)
break;
fw = factor + wheel_tab[w];
if (fw < factor)
break; /* overflow */
factor = fw;
w++;
if (w < WHEEL_SIZE)
continue;
w = WHEEL_START;
}
end:
if (N > 1)
printf(" %llu", N);
bb_putchar('\n');
}
static void factorize_numstr(const char *numstr)
{
wide_t N;
/* Leading + is ok (coreutils compat) */
if (*numstr == '+')
numstr++;
N = bb_strtoull(numstr, NULL, 10);
if (errno)
bb_show_usage();
printf("%llu:", N);
factorize(N);
}
int factor_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int factor_main(int argc UNUSED_PARAM, char **argv)
{
unpack_wheel();
//// coreutils has undocumented option ---debug (three dashes)
//getopt32(argv, "");
//argv += optind;
argv++;
if (!*argv) {
/* Read from stdin, several numbers per line are accepted */
for (;;) {
char *numstr, *line;
line = xmalloc_fgetline(stdin);
if (!line)
return EXIT_SUCCESS;
numstr = line;
for (;;) {
char *end;
numstr = skip_whitespace(numstr);
if (!numstr[0])
break;
end = skip_non_whitespace(numstr);
if (*end != '\0')
*end++ = '\0';
factorize_numstr(numstr);
numstr = end;
}
free(line);
}
}
do {
/* Leading spaces are ok (coreutils compat) */
factorize_numstr(skip_whitespace(*argv));
} while (*++argv);
return EXIT_SUCCESS;
}
|