/* vi: set sw=4 ts=4: */ /* * RFC3927 ZeroConf IPv4 Link-Local addressing * (see <http://www.zeroconf.org/>) * * Copyright (C) 2003 by Arthur van Hoff (avh@strangeberry.com) * Copyright (C) 2004 by David Brownell * * Licensed under GPLv2 or later, see file LICENSE in this source tree. */ /* * ZCIP just manages the 169.254.*.* addresses. That network is not * routed at the IP level, though various proxies or bridges can * certainly be used. Its naming is built over multicast DNS. */ //config:config ZCIP //config: bool "zcip (7.8 kb)" //config: default y //config: select PLATFORM_LINUX //config: select FEATURE_SYSLOG //config: help //config: ZCIP provides ZeroConf IPv4 address selection, according to RFC 3927. //config: It's a daemon that allocates and defends a dynamically assigned //config: address on the 169.254/16 network, requiring no system administrator. //config: //config: See http://www.zeroconf.org for further details, and "zcip.script" //config: in the busybox examples. //applet:IF_ZCIP(APPLET(zcip, BB_DIR_SBIN, BB_SUID_DROP)) //kbuild:lib-$(CONFIG_ZCIP) += zcip.o //#define DEBUG // TODO: // - more real-world usage/testing, especially daemon mode // - kernel packet filters to reduce scheduling noise // - avoid silent script failures, especially under load... // - link status monitoring (restart on link-up; stop on link-down) //usage:#define zcip_trivial_usage //usage: "[OPTIONS] IFACE SCRIPT" //usage:#define zcip_full_usage "\n\n" //usage: "Manage a ZeroConf IPv4 link-local address\n" //usage: "\n -f Run in foreground" //usage: "\n -q Quit after obtaining address" //usage: "\n -r 169.254.x.x Request this address first" //usage: "\n -l x.x.0.0 Use this range instead of 169.254" //usage: "\n -v Verbose" //usage: "\n" //usage: "\n$LOGGING=none Suppress logging" //usage: "\n$LOGGING=syslog Log to syslog" //usage: "\n" //usage: "\nWith no -q, runs continuously monitoring for ARP conflicts," //usage: "\nexits only on I/O errors (link down etc)" #include "libbb.h" #include "common_bufsiz.h" #include <netinet/ether.h> #include <net/if.h> #include <net/if_arp.h> #include <linux/sockios.h> #include <syslog.h> /* We don't need more than 32 bits of the counter */ #define MONOTONIC_US() ((unsigned)monotonic_us()) struct arp_packet { struct ether_header eth; struct ether_arp arp; } PACKED; enum { /* 0-1 seconds before sending 1st probe */ PROBE_WAIT = 1, /* 1-2 seconds between probes */ PROBE_MIN = 1, PROBE_MAX = 2, PROBE_NUM = 3, /* total probes to send */ ANNOUNCE_INTERVAL = 2, /* 2 seconds between announces */ ANNOUNCE_NUM = 3, /* announces to send */ /* if probe/announce sees a conflict, multiply RANDOM(NUM_CONFLICT) by... */ CONFLICT_MULTIPLIER = 2, /* if we monitor and see a conflict, how long is defend state? */ DEFEND_INTERVAL = 10, }; /* States during the configuration process. */ enum { PROBE = 0, ANNOUNCE, MONITOR, DEFEND }; #define VDBG(...) do { } while (0) enum { sock_fd = 3 }; struct globals { struct sockaddr iface_sockaddr; struct ether_addr our_ethaddr; uint32_t localnet_ip; } FIX_ALIASING; #define G (*(struct globals*)bb_common_bufsiz1) #define INIT_G() do { setup_common_bufsiz(); } while (0) /** * Pick a random link local IP address on 169.254/16, except that * the first and last 256 addresses are reserved. */ static uint32_t pick_nip(void) { unsigned tmp; do { tmp = rand() & IN_CLASSB_HOST; } while (tmp > (IN_CLASSB_HOST - 0x0200)); return htonl((G.localnet_ip + 0x0100) + tmp); } static const char *nip_to_a(uint32_t nip) { struct in_addr in; in.s_addr = nip; return inet_ntoa(in); } /** * Broadcast an ARP packet. */ static void send_arp_request( /* int op, - always ARPOP_REQUEST */ /* const struct ether_addr *source_eth, - always &G.our_ethaddr */ uint32_t source_nip, const struct ether_addr *target_eth, uint32_t target_nip) { enum { op = ARPOP_REQUEST }; #define source_eth (&G.our_ethaddr) struct arp_packet p; memset(&p, 0, sizeof(p)); // ether header p.eth.ether_type = htons(ETHERTYPE_ARP); memcpy(p.eth.ether_shost, source_eth, ETH_ALEN); memset(p.eth.ether_dhost, 0xff, ETH_ALEN); // arp request p.arp.arp_hrd = htons(ARPHRD_ETHER); p.arp.arp_pro = htons(ETHERTYPE_IP); p.arp.arp_hln = ETH_ALEN; p.arp.arp_pln = 4; p.arp.arp_op = htons(op); memcpy(&p.arp.arp_sha, source_eth, ETH_ALEN); memcpy(&p.arp.arp_spa, &source_nip, 4); memcpy(&p.arp.arp_tha, target_eth, ETH_ALEN); memcpy(&p.arp.arp_tpa, &target_nip, 4); // send it // Even though sock_fd is already bound to G.iface_sockaddr, just send() // won't work, because "socket is not connected" // (and connect() won't fix that, "operation not supported"). // Thus we sendto() to G.iface_sockaddr. I wonder which sockaddr // (from bind() or from sendto()?) kernel actually uses // to determine iface to emit the packet from... xsendto(sock_fd, &p, sizeof(p), &G.iface_sockaddr, sizeof(G.iface_sockaddr)); #undef source_eth } /** * Run a script. * argv[0]:intf argv[1]:script_name argv[2]:junk argv[3]:NULL */ static int run(char *argv[3], const char *param, uint32_t nip) { int status; const char *addr = addr; /* for gcc */ const char *fmt = "%s %s %s" + 3; char *env_ip = env_ip; argv[2] = (char*)param; VDBG("%s run %s %s\n", argv[0], argv[1], argv[2]); if (nip != 0) { addr = nip_to_a(nip); /* Must not use setenv() repeatedly, it leaks memory. Use putenv() */ env_ip = xasprintf("ip=%s", addr); putenv(env_ip); fmt -= 3; } bb_error_msg(fmt, argv[2], argv[0], addr); status = spawn_and_wait(argv + 1); if (nip != 0) bb_unsetenv_and_free(env_ip); if (status < 0) { bb_perror_msg("%s %s %s" + 3, argv[2], argv[0]); return -errno; } if (status != 0) bb_error_msg("script %s %s failed, exitcode=%d", argv[1], argv[2], status & 0xff); return status; } /** * Return milliseconds of random delay, up to "secs" seconds. */ static ALWAYS_INLINE unsigned random_delay_ms(unsigned secs) { return (unsigned)rand() % (secs * 1000); } /** * main program */ int zcip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE; int zcip_main(int argc UNUSED_PARAM, char **argv) { char *r_opt; const char *l_opt = "169.254.0.0"; int state; int nsent; unsigned opts; // Ugly trick, but I want these zeroed in one go struct { const struct ether_addr null_ethaddr; struct ifreq ifr; uint32_t chosen_nip; int conflicts; int timeout_ms; // must be signed int verbose; } L; #define null_ethaddr (L.null_ethaddr) #define ifr (L.ifr ) #define chosen_nip (L.chosen_nip ) #define conflicts (L.conflicts ) #define timeout_ms (L.timeout_ms ) #define verbose (L.verbose ) memset(&L, 0, sizeof(L)); INIT_G(); #define FOREGROUND (opts & 1) #define QUIT (opts & 2) // Parse commandline: prog [options] ifname script // exactly 2 args; -v accumulates and implies -f opt_complementary = "=2:vv:vf"; opts = getopt32(argv, "fqr:l:v", &r_opt, &l_opt, &verbose); #if !BB_MMU // on NOMMU reexec early (or else we will rerun things twice) if (!FOREGROUND) bb_daemonize_or_rexec(0 /*was: DAEMON_CHDIR_ROOT*/, argv); #endif // Open an ARP socket // (need to do it before openlog to prevent openlog from taking // fd 3 (sock_fd==3)) xmove_fd(xsocket(AF_PACKET, SOCK_PACKET, htons(ETH_P_ARP)), sock_fd); if (!FOREGROUND) { // do it before all bb_xx_msg calls openlog(applet_name, 0, LOG_DAEMON); logmode |= LOGMODE_SYSLOG; } bb_logenv_override(); { // -l n.n.n.n struct in_addr net; if (inet_aton(l_opt, &net) == 0 || (net.s_addr & htonl(IN_CLASSB_NET)) != net.s_addr ) { bb_error_msg_and_die("invalid network address"); } G.localnet_ip = ntohl(net.s_addr); } if (opts & 4) { // -r n.n.n.n struct in_addr ip; if (inet_aton(r_opt, &ip) == 0 || (ntohl(ip.s_addr) & IN_CLASSB_NET) != G.localnet_ip ) { bb_error_msg_and_die("invalid link address"); } chosen_nip = ip.s_addr; } argv += optind - 1; /* Now: argv[0]:junk argv[1]:intf argv[2]:script argv[3]:NULL */ /* We need to make space for script argument: */ argv[0] = argv[1]; argv[1] = argv[2]; /* Now: argv[0]:intf argv[1]:script argv[2]:junk argv[3]:NULL */ #define argv_intf (argv[0]) xsetenv("interface", argv_intf); // Initialize the interface (modprobe, ifup, etc) if (run(argv, "init", 0)) return EXIT_FAILURE; // Initialize G.iface_sockaddr // G.iface_sockaddr is: { u16 sa_family; u8 sa_data[14]; } //memset(&G.iface_sockaddr, 0, sizeof(G.iface_sockaddr)); //TODO: are we leaving sa_family == 0 (AF_UNSPEC)?! safe_strncpy(G.iface_sockaddr.sa_data, argv_intf, sizeof(G.iface_sockaddr.sa_data)); // Bind to the interface's ARP socket xbind(sock_fd, &G.iface_sockaddr, sizeof(G.iface_sockaddr)); // Get the interface's ethernet address //memset(&ifr, 0, sizeof(ifr)); strncpy_IFNAMSIZ(ifr.ifr_name, argv_intf); xioctl(sock_fd, SIOCGIFHWADDR, &ifr); memcpy(&G.our_ethaddr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN); // Start with some stable ip address, either a function of // the hardware address or else the last address we used. // we are taking low-order four bytes, as top-order ones // aren't random enough. // NOTE: the sequence of addresses we try changes only // depending on when we detect conflicts. { uint32_t t; move_from_unaligned32(t, ((char *)&G.our_ethaddr + 2)); srand(t); } // FIXME cases to handle: // - zcip already running! // - link already has local address... just defend/update // Daemonize now; don't delay system startup if (!FOREGROUND) { #if BB_MMU bb_daemonize(0 /*was: DAEMON_CHDIR_ROOT*/); #endif bb_error_msg("start, interface %s", argv_intf); } // Run the dynamic address negotiation protocol, // restarting after address conflicts: // - start with some address we want to try // - short random delay // - arp probes to see if another host uses it // 00:04:e2:64:23:c2 > ff:ff:ff:ff:ff:ff arp who-has 169.254.194.171 tell 0.0.0.0 // - arp announcements that we're claiming it // 00:04:e2:64:23:c2 > ff:ff:ff:ff:ff:ff arp who-has 169.254.194.171 (00:04:e2:64:23:c2) tell 169.254.194.171 // - use it // - defend it, within limits // exit if: // - address is successfully obtained and -q was given: // run "<script> config", then exit with exitcode 0 // - poll error (when does this happen?) // - read error (when does this happen?) // - sendto error (in send_arp_request()) (when does this happen?) // - revents & POLLERR (link down). run "<script> deconfig" first if (chosen_nip == 0) { new_nip_and_PROBE: chosen_nip = pick_nip(); } nsent = 0; state = PROBE; while (1) { struct pollfd fds[1]; unsigned deadline_us = deadline_us; struct arp_packet p; int ip_conflict; int n; fds[0].fd = sock_fd; fds[0].events = POLLIN; fds[0].revents = 0; // Poll, being ready to adjust current timeout if (!timeout_ms) { timeout_ms = random_delay_ms(PROBE_WAIT); // FIXME setsockopt(sock_fd, SO_ATTACH_FILTER, ...) to // make the kernel filter out all packets except // ones we'd care about. } if (timeout_ms >= 0) { // Set deadline_us to the point in time when we timeout deadline_us = MONOTONIC_US() + timeout_ms * 1000; } VDBG("...wait %d %s nsent=%u\n", timeout_ms, argv_intf, nsent); n = safe_poll(fds, 1, timeout_ms); if (n < 0) { //bb_perror_msg("poll"); - done in safe_poll return EXIT_FAILURE; } if (n == 0) { // timed out? VDBG("state:%d\n", state); switch (state) { case PROBE: // No conflicting ARP packets were seen: // we can progress through the states if (nsent < PROBE_NUM) { nsent++; VDBG("probe/%u %s@%s\n", nsent, argv_intf, nip_to_a(chosen_nip)); timeout_ms = PROBE_MIN * 1000; timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN); send_arp_request(0, &null_ethaddr, chosen_nip); continue; } // Switch to announce state nsent = 0; state = ANNOUNCE; goto send_announce; case ANNOUNCE: // No conflicting ARP packets were seen: // we can progress through the states if (nsent < ANNOUNCE_NUM) { send_announce: nsent++; VDBG("announce/%u %s@%s\n", nsent, argv_intf, nip_to_a(chosen_nip)); timeout_ms = ANNOUNCE_INTERVAL * 1000; send_arp_request(chosen_nip, &G.our_ethaddr, chosen_nip); continue; } // Switch to monitor state // FIXME update filters run(argv, "config", chosen_nip); // NOTE: all other exit paths should deconfig... if (QUIT) return EXIT_SUCCESS; // fall through: switch to MONITOR default: // case DEFEND: // case MONITOR: (shouldn't happen, MONITOR timeout is infinite) // Defend period ended with no ARP replies - we won timeout_ms = -1; // never timeout in monitor state state = MONITOR; continue; } } // Packet arrived, or link went down. // We need to adjust the timeout in case we didn't receive // a conflicting packet. if (timeout_ms > 0) { unsigned diff = deadline_us - MONOTONIC_US(); if ((int)(diff) < 0) { // Current time is greater than the expected timeout time. diff = 0; } VDBG("adjusting timeout\n"); timeout_ms = (diff / 1000) | 1; // never 0 } if ((fds[0].revents & POLLIN) == 0) { if (fds[0].revents & POLLERR) { // FIXME: links routinely go down; // this shouldn't necessarily exit. bb_error_msg("iface %s is down", argv_intf); if (state >= MONITOR) { // Only if we are in MONITOR or DEFEND run(argv, "deconfig", chosen_nip); } return EXIT_FAILURE; } continue; } // Read ARP packet if (safe_read(sock_fd, &p, sizeof(p)) < 0) { bb_perror_msg_and_die(bb_msg_read_error); } if (p.eth.ether_type != htons(ETHERTYPE_ARP)) continue; if (p.arp.arp_op != htons(ARPOP_REQUEST) && p.arp.arp_op != htons(ARPOP_REPLY) ) { continue; } #ifdef DEBUG { struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha; struct ether_addr *tha = (struct ether_addr *) p.arp.arp_tha; struct in_addr *spa = (struct in_addr *) p.arp.arp_spa; struct in_addr *tpa = (struct in_addr *) p.arp.arp_tpa; VDBG("source=%s %s\n", ether_ntoa(sha), inet_ntoa(*spa)); VDBG("target=%s %s\n", ether_ntoa(tha), inet_ntoa(*tpa)); } #endif ip_conflict = 0; if (memcmp(&p.arp.arp_sha, &G.our_ethaddr, ETH_ALEN) != 0) { if (memcmp(p.arp.arp_spa, &chosen_nip, 4) == 0) { // A probe or reply with source_ip == chosen ip ip_conflict = 1; } if (p.arp.arp_op == htons(ARPOP_REQUEST) && memcmp(p.arp.arp_spa, &const_int_0, 4) == 0 && memcmp(p.arp.arp_tpa, &chosen_nip, 4) == 0 ) { // A probe with source_ip == 0.0.0.0, target_ip == chosen ip: // another host trying to claim this ip! ip_conflict |= 2; } } VDBG("state:%d ip_conflict:%d\n", state, ip_conflict); if (!ip_conflict) continue; // Either src or target IP conflict exists if (state <= ANNOUNCE) { // PROBE or ANNOUNCE conflicts++; timeout_ms = PROBE_MIN * 1000 + CONFLICT_MULTIPLIER * random_delay_ms(conflicts); goto new_nip_and_PROBE; } // MONITOR or DEFEND: only src IP conflict is a problem if (ip_conflict & 1) { if (state == MONITOR) { // Src IP conflict, defend with a single ARP probe VDBG("monitor conflict - defending\n"); timeout_ms = DEFEND_INTERVAL * 1000; state = DEFEND; send_arp_request(chosen_nip, &G.our_ethaddr, chosen_nip); continue; } // state == DEFEND // Another src IP conflict, start over VDBG("defend conflict - starting over\n"); run(argv, "deconfig", chosen_nip); conflicts = 0; timeout_ms = 0; goto new_nip_and_PROBE; } // Note: if we only have a target IP conflict here (ip_conflict & 2), // IOW: if we just saw this sort of ARP packet: // aa:bb:cc:dd:ee:ff > xx:xx:xx:xx:xx:xx arp who-has <chosen_nip> tell 0.0.0.0 // we expect _kernel_ to respond to that, because <chosen_nip> // is (expected to be) configured on this iface. } // while (1) #undef argv_intf }