/* vi: set sw=4 ts=4: */ /* * Licensed under GPLv2 or later, see file LICENSE in this source tree. * Adapted from https://github.com/gavinhoward/bc * Original code copyright (c) 2018 Gavin D. Howard and contributors. */ //TODO: // maybe implement a^b for non-integer b? (see zbc_num_p()) #define DEBUG_LEXER 0 #define DEBUG_COMPILE 0 #define DEBUG_EXEC 0 // This can be left enabled for production as well: #define SANITY_CHECKS 1 //config:config BC //config: bool "bc (45 kb)" //config: default y //config: select FEATURE_DC_BIG //config: help //config: bc is a command-line, arbitrary-precision calculator with a //config: Turing-complete language. See the GNU bc manual //config: (https://www.gnu.org/software/bc/manual/bc.html) and bc spec //config: (http://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html). //config: //config: This bc has five differences to the GNU bc: //config: 1) The period (.) is a shortcut for "last", as in the BSD bc. //config: 2) Arrays are copied before being passed as arguments to //config: functions. This behavior is required by the bc spec. //config: 3) Arrays can be passed to the builtin "length" function to get //config: the number of elements in the array. This prints "1": //config: a[0] = 0; length(a[]) //config: 4) The precedence of the boolean "not" operator (!) is equal to //config: that of the unary minus (-) negation operator. This still //config: allows POSIX-compliant scripts to work while somewhat //config: preserving expected behavior (versus C) and making parsing //config: easier. //config: 5) "read()" accepts expressions, not only numeric literals. //config: //config:config DC //config: bool "dc (36 kb)" //config: default y //config: help //config: dc is a reverse-polish notation command-line calculator which //config: supports unlimited precision arithmetic. See the FreeBSD man page //config: (https://www.unix.com/man-page/FreeBSD/1/dc/) and GNU dc manual //config: (https://www.gnu.org/software/bc/manual/dc-1.05/html_mono/dc.html). //config: //config: This dc has a few differences from the two above: //config: 1) When printing a byte stream (command "P"), this dc follows what //config: the FreeBSD dc does. //config: 2) Implements the GNU extensions for divmod ("~") and //config: modular exponentiation ("|"). //config: 3) Implements all FreeBSD extensions, except for "J" and "M". //config: 4) Like the FreeBSD dc, this dc supports extended registers. //config: However, they are implemented differently. When it encounters //config: whitespace where a register should be, it skips the whitespace. //config: If the character following is not a lowercase letter, an error //config: is issued. Otherwise, the register name is parsed by the //config: following regex: [a-z][a-z0-9_]* //config: This generally means that register names will be surrounded by //config: whitespace. Examples: //config: l idx s temp L index S temp2 < do_thing //config: Also note that, like the FreeBSD dc, extended registers are not //config: allowed unless the "-x" option is given. //config: //config:if BC || DC # for menuconfig indenting //config: //config:config FEATURE_DC_BIG //config: bool "Use bc code base for dc (larger, more features)" //config: default y //config: //config:config FEATURE_DC_LIBM //config: bool "Enable power and exp functions (requires libm)" //config: default y //config: depends on DC && !BC && !FEATURE_DC_BIG //config: help //config: Enable power and exp functions. //config: NOTE: This will require libm to be present for linking. //config: //config:config FEATURE_BC_INTERACTIVE //config: bool "Interactive mode (+4kb)" //config: default y //config: depends on BC || (DC && FEATURE_DC_BIG) //config: help //config: Enable interactive mode: when started on a tty, //config: ^C interrupts execution and returns to command line, //config: errors also return to command line instead of exiting, //config: line editing with history is available. //config: //config: With this option off, input can still be taken from tty, //config: but all errors are fatal, ^C is fatal, //config: tty is treated exactly the same as any other //config: standard input (IOW: no line editing). //config: //config:config FEATURE_BC_LONG_OPTIONS //config: bool "Enable bc/dc long options" //config: default y //config: depends on BC || (DC && FEATURE_DC_BIG) //config: //config:endif //applet:IF_BC(APPLET(bc, BB_DIR_USR_BIN, BB_SUID_DROP)) //applet:IF_DC(APPLET(dc, BB_DIR_USR_BIN, BB_SUID_DROP)) //kbuild:lib-$(CONFIG_BC) += bc.o //kbuild:lib-$(CONFIG_DC) += bc.o //See www.gnu.org/software/bc/manual/bc.html //usage:#define bc_trivial_usage //usage: "[-sqlw] [FILE]..." //usage: //usage:#define bc_full_usage "\n" //usage: "\nArbitrary precision calculator" //usage: "\n" ///////: "\n -i Interactive" - has no effect for now //usage: "\n -q Quiet" //usage: "\n -l Load standard library" //usage: "\n -s Be POSIX compatible" //usage: "\n -w Warn if extensions are used" ///////: "\n -v Version" //usage: "\n" //usage: "\n$BC_LINE_LENGTH changes output width" //usage: //usage:#define bc_example_usage //usage: "3 + 4.129\n" //usage: "1903 - 2893\n" //usage: "-129 * 213.28935\n" //usage: "12 / -1932\n" //usage: "12 % 12\n" //usage: "34 ^ 189\n" //usage: "scale = 13\n" //usage: "ibase = 2\n" //usage: "obase = A\n" //usage: //usage:#define dc_trivial_usage //usage: IF_FEATURE_DC_BIG("[-x] ")"[-eSCRIPT]... [-fFILE]... [FILE]..." //usage: //usage:#define dc_full_usage "\n" //usage: "\nTiny RPN calculator. Operations:" //usage: "\nArithmetic: + - * / % ^" //usage: IF_FEATURE_DC_BIG( //usage: "\n~ - divide with remainder" //usage: "\n| - modular exponentiation" //usage: "\nv - square root" //////// "\nA-F - digits 10..15 //////// "\n_NNN - push negative number -NNN //////// "\n[string] - push string (in FreeBSD, \[, \] and \\ are escapes, not implemented here and in GNU) //////// "\nR - DC_LEX_POP pop and discard //////// "\nc - DC_LEX_CLEAR_STACK clear stack //////// "\nd - DC_LEX_DUPLICATE duplicate top-of-stack //////// "\nr - DC_LEX_SWAP swap top-of-stack //////// "\n:r - DC_LEX_COLON pop index, pop value, store to array 'r' //////// "\n;r - DC_LEX_SCOLON pop index, fetch from array 'r', push //////// "\nLr - DC_LEX_LOAD_POP pop register 'r', push //////// "\nSr - DC_LEX_STORE_PUSH pop, push to register 'r' //////// "\nlr - DC_LEX_LOAD read register 'r', push //////// "\nsr - DC_LEX_OP_ASSIGN pop, assign to register 'r' //////// "\n? - DC_LEX_READ read line and execute //////// "\nx - DC_LEX_EXECUTE pop string and execute //////// "\nr - XC_LEX_OP_REL_LT pop, pop, execute register 'r' if top-of-stack was greater //////// "\n=r - XC_LEX_OP_REL_EQ pop, pop, execute register 'r' if equal //////// "\n !r !=r - negated forms //////// "\n >tef - "if greater execute register 't' else execute 'f'" //////// "\nQ - DC_LEX_NQUIT pop, "break N" from macro invocations //////// "\nq - DC_LEX_QUIT "break 2" (if less than 2 levels of macros, exit dc) //////// "\nX - DC_LEX_SCALE_FACTOR pop, push number of fractional digits //////// "\nZ - DC_LEX_LENGTH pop, push number of digits it has (or number of characters in string) //////// "\na - DC_LEX_ASCIIFY pop, push low-order byte as char or 1st char of string //////// "\n( - DC_LEX_LPAREN (FreeBSD, not in GNU) pop, pop, if top-of-stack was less push 1 else push 0 //////// "\n{ - DC_LEX_LBRACE (FreeBSD, not in GNU) pop, pop, if top-of-stack was less-or-equal push 1 else push 0 //////// "\nG - DC_LEX_EQ_NO_REG (FreeBSD, not in GNU) pop, pop, if equal push 1 else push 0 //////// "\nN - DC_LEX_OP_BOOL_NOT (FreeBSD, not in GNU) pop, if 0 push 1 else push 0 //////// FreeBSD also has J and M commands, used internally by bc //////// "\nn - DC_LEX_PRINT_POP pop, print without newline //////// "\nP - DC_LEX_PRINT_STREAM pop, print string or hex bytes //usage: ) //usage: "\np - print top of the stack without popping" //usage: "\nf - print entire stack" //////// "\nz - DC_LEX_STACK_LEVEL push stack depth //////// "\nK - DC_LEX_SCALE push precision //////// "\nI - DC_LEX_IBASE push input radix //////// "\nO - DC_LEX_OBASE push output radix //usage: IF_FEATURE_DC_BIG( //usage: "\nk - pop the value and set precision" //usage: "\ni - pop the value and set input radix" //usage: ) //usage: "\no - pop the value and set output radix" //usage: "\nExamples: dc -e'2 2 + p' -> 4, dc -e'8 8 * 2 2 + / p' -> 16" //usage: //usage:#define dc_example_usage //usage: "$ dc -e'2 2 + p'\n" //usage: "4\n" //usage: "$ dc -e'8 8 \\* 2 2 + / p'\n" //usage: "16\n" //usage: "$ dc -e'0 1 & p'\n" //usage: "0\n" //usage: "$ dc -e'0 1 | p'\n" //usage: "1\n" //usage: "$ echo '72 9 / 8 * p' | dc\n" //usage: "64\n" #include "libbb.h" #include "common_bufsiz.h" #if !ENABLE_BC && !ENABLE_FEATURE_DC_BIG # include "dc.c" #else #if DEBUG_LEXER static uint8_t lex_indent; #define dbg_lex(...) \ do { \ fprintf(stderr, "%*s", lex_indent, ""); \ bb_error_msg(__VA_ARGS__); \ } while (0) #define dbg_lex_enter(...) \ do { \ dbg_lex(__VA_ARGS__); \ lex_indent++; \ } while (0) #define dbg_lex_done(...) \ do { \ lex_indent--; \ dbg_lex(__VA_ARGS__); \ } while (0) #else # define dbg_lex(...) ((void)0) # define dbg_lex_enter(...) ((void)0) # define dbg_lex_done(...) ((void)0) #endif #if DEBUG_COMPILE # define dbg_compile(...) bb_error_msg(__VA_ARGS__) #else # define dbg_compile(...) ((void)0) #endif #if DEBUG_EXEC # define dbg_exec(...) bb_error_msg(__VA_ARGS__) #else # define dbg_exec(...) ((void)0) #endif typedef enum BcStatus { BC_STATUS_SUCCESS = 0, BC_STATUS_FAILURE = 1, } BcStatus; #define BC_VEC_INVALID_IDX ((size_t) -1) #define BC_VEC_START_CAP (1 << 5) typedef void (*BcVecFree)(void *) FAST_FUNC; typedef struct BcVec { char *v; size_t len; size_t cap; size_t size; BcVecFree dtor; } BcVec; typedef signed char BcDig; typedef struct BcNum { BcDig *restrict num; size_t rdx; size_t len; size_t cap; bool neg; } BcNum; #define BC_NUM_MAX_IBASE 36 // larger value might speed up BIGNUM calculations a bit: #define BC_NUM_DEF_SIZE 16 #define BC_NUM_PRINT_WIDTH 70 #define BC_NUM_KARATSUBA_LEN 32 typedef enum BcInst { #if ENABLE_BC BC_INST_INC_PRE, BC_INST_DEC_PRE, BC_INST_INC_POST, BC_INST_DEC_POST, #endif XC_INST_NEG, // order XC_INST_REL_EQ, // should XC_INST_REL_LE, // match XC_INST_REL_GE, // LEX XC_INST_REL_NE, // constants XC_INST_REL_LT, // for XC_INST_REL_GT, // these XC_INST_POWER, // operations XC_INST_MULTIPLY, // | XC_INST_DIVIDE, // | XC_INST_MODULUS, // | XC_INST_PLUS, // | XC_INST_MINUS, // | XC_INST_BOOL_NOT, // | XC_INST_BOOL_OR, // | XC_INST_BOOL_AND, // | #if ENABLE_BC BC_INST_ASSIGN_POWER, // | BC_INST_ASSIGN_MULTIPLY,// | BC_INST_ASSIGN_DIVIDE, // | BC_INST_ASSIGN_MODULUS, // | BC_INST_ASSIGN_PLUS, // | BC_INST_ASSIGN_MINUS, // | #endif XC_INST_ASSIGN, // V XC_INST_NUM, XC_INST_VAR, XC_INST_ARRAY_ELEM, XC_INST_ARRAY, XC_INST_SCALE_FUNC, XC_INST_IBASE, // order of these constans should match other enums XC_INST_OBASE, // order of these constans should match other enums XC_INST_SCALE, // order of these constans should match other enums IF_BC(BC_INST_LAST,) // order of these constans should match other enums XC_INST_LENGTH, XC_INST_READ, XC_INST_SQRT, XC_INST_PRINT, XC_INST_PRINT_POP, XC_INST_STR, XC_INST_PRINT_STR, #if ENABLE_BC BC_INST_HALT, BC_INST_JUMP, BC_INST_JUMP_ZERO, BC_INST_CALL, BC_INST_RET0, #endif XC_INST_RET, XC_INST_POP, #if ENABLE_DC DC_INST_POP_EXEC, DC_INST_MODEXP, DC_INST_DIVMOD, DC_INST_EXECUTE, DC_INST_EXEC_COND, DC_INST_ASCIIFY, DC_INST_PRINT_STREAM, DC_INST_PRINT_STACK, DC_INST_CLEAR_STACK, DC_INST_STACK_LEN, DC_INST_DUPLICATE, DC_INST_SWAP, DC_INST_LOAD, DC_INST_PUSH_VAR, DC_INST_PUSH_TO_VAR, DC_INST_QUIT, DC_INST_NQUIT, DC_INST_INVALID = -1, #endif } BcInst; typedef struct BcId { char *name; size_t idx; } BcId; typedef struct BcFunc { BcVec code; IF_BC(BcVec labels;) IF_BC(BcVec autos;) IF_BC(BcVec strs;) IF_BC(BcVec consts;) IF_BC(size_t nparams;) IF_BC(bool voidfunc;) } BcFunc; typedef enum BcResultType { XC_RESULT_TEMP, IF_BC(BC_RESULT_VOID,) // same as TEMP, but INST_PRINT will ignore it XC_RESULT_VAR, XC_RESULT_ARRAY_ELEM, XC_RESULT_ARRAY, XC_RESULT_STR, //code uses "inst - XC_INST_IBASE + XC_RESULT_IBASE" construct, XC_RESULT_IBASE, // relative order should match for: XC_INST_IBASE XC_RESULT_OBASE, // relative order should match for: XC_INST_OBASE XC_RESULT_SCALE, // relative order should match for: XC_INST_SCALE IF_BC(BC_RESULT_LAST,) // relative order should match for: BC_INST_LAST XC_RESULT_CONSTANT, IF_BC(BC_RESULT_ONE,) } BcResultType; typedef union BcResultData { BcNum n; BcVec v; BcId id; } BcResultData; typedef struct BcResult { BcResultType t; BcResultData d; } BcResult; typedef struct BcInstPtr { size_t func; size_t inst_idx; } BcInstPtr; typedef enum BcType { BC_TYPE_VAR, BC_TYPE_ARRAY, BC_TYPE_REF, } BcType; typedef enum BcLexType { XC_LEX_EOF, XC_LEX_INVALID, XC_LEX_NLINE, XC_LEX_WHITESPACE, XC_LEX_STR, XC_LEX_NAME, XC_LEX_NUMBER, XC_LEX_1st_op, XC_LEX_NEG = XC_LEX_1st_op, // order XC_LEX_OP_REL_EQ, // should XC_LEX_OP_REL_LE, // match XC_LEX_OP_REL_GE, // INST XC_LEX_OP_REL_NE, // constants XC_LEX_OP_REL_LT, // for XC_LEX_OP_REL_GT, // these XC_LEX_OP_POWER, // operations XC_LEX_OP_MULTIPLY, // | XC_LEX_OP_DIVIDE, // | XC_LEX_OP_MODULUS, // | XC_LEX_OP_PLUS, // | XC_LEX_OP_MINUS, // | XC_LEX_OP_last = XC_LEX_OP_MINUS, #if ENABLE_BC BC_LEX_OP_BOOL_NOT, // | BC_LEX_OP_BOOL_OR, // | BC_LEX_OP_BOOL_AND, // | BC_LEX_OP_ASSIGN_POWER, // | BC_LEX_OP_ASSIGN_MULTIPLY, // | BC_LEX_OP_ASSIGN_DIVIDE, // | BC_LEX_OP_ASSIGN_MODULUS, // | BC_LEX_OP_ASSIGN_PLUS, // | BC_LEX_OP_ASSIGN_MINUS, // | BC_LEX_OP_ASSIGN, // V BC_LEX_OP_INC, BC_LEX_OP_DEC, BC_LEX_LPAREN, // () are 0x28 and 0x29 BC_LEX_RPAREN, // must be LPAREN+1: code uses (c - '(' + BC_LEX_LPAREN) BC_LEX_LBRACKET, // [] are 0x5B and 0x5D BC_LEX_COMMA, BC_LEX_RBRACKET, // must be LBRACKET+2: code uses (c - '[' + BC_LEX_LBRACKET) BC_LEX_LBRACE, // {} are 0x7B and 0x7D BC_LEX_SCOLON, BC_LEX_RBRACE, // must be LBRACE+2: code uses (c - '{' + BC_LEX_LBRACE) BC_LEX_KEY_1st_keyword, BC_LEX_KEY_AUTO = BC_LEX_KEY_1st_keyword, BC_LEX_KEY_BREAK, BC_LEX_KEY_CONTINUE, BC_LEX_KEY_DEFINE, BC_LEX_KEY_ELSE, BC_LEX_KEY_FOR, BC_LEX_KEY_HALT, // code uses "type - BC_LEX_KEY_IBASE + XC_INST_IBASE" construct, BC_LEX_KEY_IBASE, // relative order should match for: XC_INST_IBASE BC_LEX_KEY_OBASE, // relative order should match for: XC_INST_OBASE BC_LEX_KEY_IF, BC_LEX_KEY_LAST, // relative order should match for: BC_INST_LAST BC_LEX_KEY_LENGTH, BC_LEX_KEY_LIMITS, BC_LEX_KEY_PRINT, BC_LEX_KEY_QUIT, BC_LEX_KEY_READ, BC_LEX_KEY_RETURN, BC_LEX_KEY_SCALE, BC_LEX_KEY_SQRT, BC_LEX_KEY_WHILE, #endif // ENABLE_BC #if ENABLE_DC DC_LEX_OP_BOOL_NOT = XC_LEX_OP_last + 1, DC_LEX_OP_ASSIGN, DC_LEX_LPAREN, DC_LEX_SCOLON, DC_LEX_READ, DC_LEX_IBASE, DC_LEX_SCALE, DC_LEX_OBASE, DC_LEX_LENGTH, DC_LEX_PRINT, DC_LEX_QUIT, DC_LEX_SQRT, DC_LEX_LBRACE, DC_LEX_EQ_NO_REG, DC_LEX_OP_MODEXP, DC_LEX_OP_DIVMOD, DC_LEX_COLON, DC_LEX_ELSE, DC_LEX_EXECUTE, DC_LEX_PRINT_STACK, DC_LEX_CLEAR_STACK, DC_LEX_STACK_LEVEL, DC_LEX_DUPLICATE, DC_LEX_SWAP, DC_LEX_POP, DC_LEX_ASCIIFY, DC_LEX_PRINT_STREAM, // code uses "t - DC_LEX_STORE_IBASE + XC_INST_IBASE" construct, DC_LEX_STORE_IBASE, // relative order should match for: XC_INST_IBASE DC_LEX_STORE_OBASE, // relative order should match for: XC_INST_OBASE DC_LEX_STORE_SCALE, // relative order should match for: XC_INST_SCALE DC_LEX_LOAD, DC_LEX_LOAD_POP, DC_LEX_STORE_PUSH, DC_LEX_PRINT_POP, DC_LEX_NQUIT, DC_LEX_SCALE_FACTOR, #endif } BcLexType; // must match order of BC_LEX_KEY_foo etc above #if ENABLE_BC struct BcLexKeyword { char name8[8]; }; #define LEX_KW_ENTRY(a, b) \ { .name8 = a /*, .posix = b */ } static const struct BcLexKeyword bc_lex_kws[20] ALIGN8 = { LEX_KW_ENTRY("auto" , 1), // 0 LEX_KW_ENTRY("break" , 1), // 1 LEX_KW_ENTRY("continue", 0), // 2 note: this one has no terminating NUL LEX_KW_ENTRY("define" , 1), // 3 LEX_KW_ENTRY("else" , 0), // 4 LEX_KW_ENTRY("for" , 1), // 5 LEX_KW_ENTRY("halt" , 0), // 6 LEX_KW_ENTRY("ibase" , 1), // 7 LEX_KW_ENTRY("obase" , 1), // 8 LEX_KW_ENTRY("if" , 1), // 9 LEX_KW_ENTRY("last" , 0), // 10 LEX_KW_ENTRY("length" , 1), // 11 LEX_KW_ENTRY("limits" , 0), // 12 LEX_KW_ENTRY("print" , 0), // 13 LEX_KW_ENTRY("quit" , 1), // 14 LEX_KW_ENTRY("read" , 0), // 15 LEX_KW_ENTRY("return" , 1), // 16 LEX_KW_ENTRY("scale" , 1), // 17 LEX_KW_ENTRY("sqrt" , 1), // 18 LEX_KW_ENTRY("while" , 1), // 19 }; #undef LEX_KW_ENTRY #define STRING_else (bc_lex_kws[4].name8) #define STRING_for (bc_lex_kws[5].name8) #define STRING_if (bc_lex_kws[9].name8) #define STRING_while (bc_lex_kws[19].name8) enum { POSIX_KWORD_MASK = 0 | (1 << 0) // 0 | (1 << 1) // 1 | (0 << 2) // 2 | (1 << 3) // 3 | (0 << 4) // 4 | (1 << 5) // 5 | (0 << 6) // 6 | (1 << 7) // 7 | (1 << 8) // 8 | (1 << 9) // 9 | (0 << 10) // 10 | (1 << 11) // 11 | (0 << 12) // 12 | (0 << 13) // 13 | (1 << 14) // 14 | (0 << 15) // 15 | (1 << 16) // 16 | (1 << 17) // 17 | (1 << 18) // 18 | (1 << 19) // 19 }; #define keyword_is_POSIX(i) ((1 << (i)) & POSIX_KWORD_MASK) // This is a bit array that corresponds to token types. An entry is // true if the token is valid in an expression, false otherwise. // Used to figure out when expr parsing should stop *without error message* // - 0 element indicates this condition. 1 means "this token is to be eaten // as part of the expression", it can then still be determined to be invalid // by later processing. enum { #define EXBITS(a,b,c,d,e,f,g,h) \ ((uint64_t)((a << 0)+(b << 1)+(c << 2)+(d << 3)+(e << 4)+(f << 5)+(g << 6)+(h << 7))) BC_PARSE_EXPRS_BITS = 0 // corresponding BC_LEX_xyz: + (EXBITS(0,0,0,0,0,1,1,1) << (0*8)) // 0: EOF INVAL NL WS STR NAME NUM - + (EXBITS(1,1,1,1,1,1,1,1) << (1*8)) // 8: == <= >= != < > ^ * + (EXBITS(1,1,1,1,1,1,1,1) << (2*8)) // 16: / % + - ! || && ^= + (EXBITS(1,1,1,1,1,1,1,1) << (3*8)) // 24: *= /= %= += -= = ++ -- + (EXBITS(1,1,0,0,0,0,0,0) << (4*8)) // 32: ( ) [ , ] { ; } + (EXBITS(0,0,0,0,0,0,0,1) << (5*8)) // 40: auto break cont define else for halt ibase + (EXBITS(1,0,1,1,0,0,0,1) << (6*8)) // 48: obase if last length limits print quit read + (EXBITS(0,1,1,0,0,0,0,0) << (7*8)) // 56: return scale sqrt while #undef EXBITS }; static ALWAYS_INLINE long lex_allowed_in_bc_expr(unsigned i) { #if ULONG_MAX > 0xffffffff // 64-bit version (will not work correctly for 32-bit longs!) return BC_PARSE_EXPRS_BITS & (1UL << i); #else // 32-bit version unsigned long m = (uint32_t)BC_PARSE_EXPRS_BITS; if (i >= 32) { m = (uint32_t)(BC_PARSE_EXPRS_BITS >> 32); i &= 31; } return m & (1UL << i); #endif } // This is an array of data for operators that correspond to // [XC_LEX_1st_op...] token types. static const uint8_t bc_ops_prec_and_assoc[] ALIGN1 = { #define OP(p,l) ((int)(l) * 0x10 + (p)) OP(1, false), // neg OP(6, true ), OP( 6, true ), OP( 6, true ), OP( 6, true ), OP( 6, true ), OP( 6, true ), // == <= >= != < > OP(2, false), // pow OP(3, true ), OP( 3, true ), OP( 3, true ), // mul div mod OP(4, true ), OP( 4, true ), // + - OP(1, false), // not OP(7, true ), OP( 7, true ), // or and OP(5, false), OP( 5, false ), OP( 5, false ), OP( 5, false ), OP( 5, false ), // ^= *= /= %= += OP(5, false), OP( 5, false ), // -= = OP(0, false), OP( 0, false ), // inc dec #undef OP }; #define bc_operation_PREC(i) (bc_ops_prec_and_assoc[i] & 0x0f) #define bc_operation_LEFT(i) (bc_ops_prec_and_assoc[i] & 0x10) #endif // ENABLE_BC #if ENABLE_DC static const //BcLexType - should be this type uint8_t dc_char_to_LEX[] ALIGN1 = { // %&'( XC_LEX_OP_MODULUS, XC_LEX_INVALID, XC_LEX_INVALID, DC_LEX_LPAREN, // )*+, XC_LEX_INVALID, XC_LEX_OP_MULTIPLY, XC_LEX_OP_PLUS, XC_LEX_INVALID, // -./ XC_LEX_OP_MINUS, XC_LEX_INVALID, XC_LEX_OP_DIVIDE, // 0123456789 XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, // :;<=>?@ DC_LEX_COLON, DC_LEX_SCOLON, XC_LEX_OP_REL_GT, XC_LEX_OP_REL_EQ, XC_LEX_OP_REL_LT, DC_LEX_READ, XC_LEX_INVALID, // ABCDEFGH XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, DC_LEX_EQ_NO_REG, XC_LEX_INVALID, // IJKLMNOP DC_LEX_IBASE, XC_LEX_INVALID, DC_LEX_SCALE, DC_LEX_LOAD_POP, XC_LEX_INVALID, DC_LEX_OP_BOOL_NOT, DC_LEX_OBASE, DC_LEX_PRINT_STREAM, // QRSTUVWX DC_LEX_NQUIT, DC_LEX_POP, DC_LEX_STORE_PUSH, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, DC_LEX_SCALE_FACTOR, // YZ XC_LEX_INVALID, DC_LEX_LENGTH, // [\] XC_LEX_INVALID, XC_LEX_INVALID, XC_LEX_INVALID, // ^_` XC_LEX_OP_POWER, XC_LEX_NEG, XC_LEX_INVALID, // abcdefgh DC_LEX_ASCIIFY, XC_LEX_INVALID, DC_LEX_CLEAR_STACK, DC_LEX_DUPLICATE, DC_LEX_ELSE, DC_LEX_PRINT_STACK, XC_LEX_INVALID, XC_LEX_INVALID, // ijklmnop DC_LEX_STORE_IBASE, XC_LEX_INVALID, DC_LEX_STORE_SCALE, DC_LEX_LOAD, XC_LEX_INVALID, DC_LEX_PRINT_POP, DC_LEX_STORE_OBASE, DC_LEX_PRINT, // qrstuvwx DC_LEX_QUIT, DC_LEX_SWAP, DC_LEX_OP_ASSIGN, XC_LEX_INVALID, XC_LEX_INVALID, DC_LEX_SQRT, XC_LEX_INVALID, DC_LEX_EXECUTE, // yz XC_LEX_INVALID, DC_LEX_STACK_LEVEL, // {|}~ DC_LEX_LBRACE, DC_LEX_OP_MODEXP, XC_LEX_INVALID, DC_LEX_OP_DIVMOD, }; static const //BcInst - should be this type. Using signed narrow type since DC_INST_INVALID is -1 int8_t dc_LEX_to_INST[] ALIGN1 = { //starts at XC_LEX_OP_POWER // corresponding XC/DC_LEX_xyz: XC_INST_POWER, XC_INST_MULTIPLY, // XC_LEX_OP_POWER XC_LEX_OP_MULTIPLY XC_INST_DIVIDE, XC_INST_MODULUS, // XC_LEX_OP_DIVIDE XC_LEX_OP_MODULUS XC_INST_PLUS, XC_INST_MINUS, // XC_LEX_OP_PLUS XC_LEX_OP_MINUS XC_INST_BOOL_NOT, // DC_LEX_OP_BOOL_NOT DC_INST_INVALID, // DC_LEX_OP_ASSIGN XC_INST_REL_GT, // DC_LEX_LPAREN DC_INST_INVALID, // DC_LEX_SCOLON DC_INST_INVALID, // DC_LEX_READ XC_INST_IBASE, // DC_LEX_IBASE XC_INST_SCALE, // DC_LEX_SCALE XC_INST_OBASE, // DC_LEX_OBASE XC_INST_LENGTH, // DC_LEX_LENGTH XC_INST_PRINT, // DC_LEX_PRINT DC_INST_QUIT, // DC_LEX_QUIT XC_INST_SQRT, // DC_LEX_SQRT XC_INST_REL_GE, // DC_LEX_LBRACE XC_INST_REL_EQ, // DC_LEX_EQ_NO_REG DC_INST_MODEXP, DC_INST_DIVMOD, // DC_LEX_OP_MODEXP DC_LEX_OP_DIVMOD DC_INST_INVALID, DC_INST_INVALID, // DC_LEX_COLON DC_LEX_ELSE DC_INST_EXECUTE, // DC_LEX_EXECUTE DC_INST_PRINT_STACK, DC_INST_CLEAR_STACK, // DC_LEX_PRINT_STACK DC_LEX_CLEAR_STACK DC_INST_STACK_LEN, DC_INST_DUPLICATE, // DC_LEX_STACK_LEVEL DC_LEX_DUPLICATE DC_INST_SWAP, XC_INST_POP, // DC_LEX_SWAP DC_LEX_POP DC_INST_ASCIIFY, DC_INST_PRINT_STREAM, // DC_LEX_ASCIIFY DC_LEX_PRINT_STREAM DC_INST_INVALID, DC_INST_INVALID, // DC_LEX_STORE_IBASE DC_LEX_STORE_OBASE DC_INST_INVALID, DC_INST_INVALID, // DC_LEX_STORE_SCALE DC_LEX_LOAD DC_INST_INVALID, DC_INST_INVALID, // DC_LEX_LOAD_POP DC_LEX_STORE_PUSH XC_INST_PRINT, DC_INST_NQUIT, // DC_LEX_PRINT_POP DC_LEX_NQUIT XC_INST_SCALE_FUNC, // DC_LEX_SCALE_FACTOR // DC_INST_INVALID in this table either means that corresponding LEX // is not possible for dc, or that it does not compile one-to-one // to a single INST. }; #endif // ENABLE_DC typedef struct BcParse { smallint lex; // was BcLexType // first member is most used smallint lex_last; // was BcLexType size_t lex_line; const char *lex_inbuf; const char *lex_next_at; // last lex_next() was called at this string const char *lex_filename; FILE *lex_input_fp; BcVec lex_strnumbuf; BcFunc *func; size_t fidx; IF_BC(size_t in_funcdef;) IF_BC(BcVec exits;) IF_BC(BcVec conds;) IF_BC(BcVec ops;) } BcParse; typedef struct BcProgram { size_t len; size_t nchars; size_t scale; size_t ib_t; size_t ob_t; BcVec results; BcVec exestack; BcVec fns; IF_BC(BcVec fn_map;) BcVec vars; BcVec var_map; BcVec arrs; BcVec arr_map; IF_DC(BcVec strs;) IF_DC(BcVec consts;) BcNum zero; IF_BC(BcNum one;) IF_BC(BcNum last;) } BcProgram; struct globals { BcParse prs; // first member is most used // For error messages. Can be set to current parsed line, // or [TODO] to current executing line (can be before last parsed one) size_t err_line; BcVec input_buffer; IF_FEATURE_BC_INTERACTIVE(smallint ttyin;) IF_FEATURE_CLEAN_UP(smallint exiting;) BcProgram prog; BcVec files; char *env_args; #if ENABLE_FEATURE_EDITING line_input_t *line_input_state; #endif } FIX_ALIASING; #define G (*ptr_to_globals) #define INIT_G() do { \ SET_PTR_TO_GLOBALS(xzalloc(sizeof(G))); \ } while (0) #define FREE_G() do { \ FREE_PTR_TO_GLOBALS(); \ } while (0) #define G_posix (ENABLE_BC && (option_mask32 & BC_FLAG_S)) #define G_warn (ENABLE_BC && (option_mask32 & BC_FLAG_W)) #define G_exreg (ENABLE_DC && (option_mask32 & DC_FLAG_X)) #if ENABLE_FEATURE_BC_INTERACTIVE # define G_interrupt bb_got_signal # define G_ttyin G.ttyin #else # define G_interrupt 0 # define G_ttyin 0 #endif #if ENABLE_FEATURE_CLEAN_UP # define G_exiting G.exiting #else # define G_exiting 0 #endif #define IS_BC (ENABLE_BC && (!ENABLE_DC || applet_name[0] == 'b')) #define IS_DC (ENABLE_DC && (!ENABLE_BC || applet_name[0] != 'b')) #if ENABLE_BC # define BC_PARSE_REL (1 << 0) # define BC_PARSE_PRINT (1 << 1) # define BC_PARSE_ARRAY (1 << 2) # define BC_PARSE_NOCALL (1 << 3) #endif #define BC_PROG_MAIN 0 #define BC_PROG_READ 1 #if ENABLE_DC #define BC_PROG_REQ_FUNCS 2 #endif #define BC_FLAG_W (1 << 0) #define BC_FLAG_V (1 << 1) #define BC_FLAG_S (1 << 2) #define BC_FLAG_Q (1 << 3) #define BC_FLAG_L (1 << 4) #define BC_FLAG_I ((1 << 5) * ENABLE_DC) #define DC_FLAG_X ((1 << 6) * ENABLE_DC) #define BC_MAX_OBASE ((unsigned) 999) #define BC_MAX_DIM ((unsigned) INT_MAX) #define BC_MAX_SCALE ((unsigned) UINT_MAX) #define BC_MAX_STRING ((unsigned) UINT_MAX - 1) #define BC_MAX_NUM BC_MAX_STRING // Unused apart from "limits" message. Just show a "biggish number" there. //#define BC_MAX_EXP ((unsigned long) LONG_MAX) //#define BC_MAX_VARS ((unsigned long) SIZE_MAX - 1) #define BC_MAX_EXP_STR "999999999" #define BC_MAX_VARS_STR "999999999" #define BC_MAX_OBASE_STR "999" #if INT_MAX == 2147483647 # define BC_MAX_DIM_STR "2147483647" #elif INT_MAX == 9223372036854775807 # define BC_MAX_DIM_STR "9223372036854775807" #else # error Strange INT_MAX #endif #if UINT_MAX == 4294967295U # define BC_MAX_SCALE_STR "4294967295" # define BC_MAX_STRING_STR "4294967294" #elif UINT_MAX == 18446744073709551615U # define BC_MAX_SCALE_STR "18446744073709551615" # define BC_MAX_STRING_STR "18446744073709551614" #else # error Strange UINT_MAX #endif #define BC_MAX_NUM_STR BC_MAX_STRING_STR // In configurations where errors abort instead of propagating error // return code up the call chain, functions returning BC_STATUS // actually don't return anything, they always succeed and return "void". // A macro wrapper is provided, which makes this statement work: // s = zbc_func(...) // and makes it visible to the compiler that s is always zero, // allowing compiler to optimize dead code after the statement. // // To make code more readable, each such function has a "z" // ("always returning zero") prefix, i.e. zbc_foo or zdc_foo. // #if ENABLE_FEATURE_BC_INTERACTIVE || ENABLE_FEATURE_CLEAN_UP # define ERRORS_ARE_FATAL 0 # define ERRORFUNC /*nothing*/ # define IF_ERROR_RETURN_POSSIBLE(a) a # define BC_STATUS BcStatus # define RETURN_STATUS(v) return (v) # define COMMA_SUCCESS /*nothing*/ #else # define ERRORS_ARE_FATAL 1 # define ERRORFUNC NORETURN # define IF_ERROR_RETURN_POSSIBLE(a) /*nothing*/ # define BC_STATUS void # define RETURN_STATUS(v) do { ((void)(v)); return; } while (0) # define COMMA_SUCCESS ,BC_STATUS_SUCCESS #endif // // Utility routines // #define BC_MAX(a, b) ((a) > (b) ? (a) : (b)) #define BC_MIN(a, b) ((a) < (b) ? (a) : (b)) static void fflush_and_check(void) { fflush_all(); if (ferror(stdout) || ferror(stderr)) bb_simple_perror_msg_and_die("output error"); } #if ENABLE_FEATURE_CLEAN_UP #define QUIT_OR_RETURN_TO_MAIN \ do { \ IF_FEATURE_BC_INTERACTIVE(G_ttyin = 0;) /* do not loop in main loop anymore */ \ G_exiting = 1; \ return BC_STATUS_FAILURE; \ } while (0) #else static void quit(void) NORETURN; static void quit(void) { if (ferror(stdin)) bb_simple_perror_msg_and_die("input error"); fflush_and_check(); dbg_exec("quit(): exiting with exitcode SUCCESS"); exit(0); } #define QUIT_OR_RETURN_TO_MAIN quit() #endif static void bc_verror_msg(const char *fmt, va_list p) { const char *sv = sv; // for compiler if (G.prs.lex_filename) { sv = applet_name; applet_name = xasprintf("%s: %s:%lu", applet_name, G.prs.lex_filename, (unsigned long)G.err_line ); } bb_verror_msg(fmt, p, NULL); if (G.prs.lex_filename) { free((char*)applet_name); applet_name = sv; } } static NOINLINE ERRORFUNC int bc_error_fmt(const char *fmt, ...) { va_list p; va_start(p, fmt); bc_verror_msg(fmt, p); va_end(p); if (ENABLE_FEATURE_CLEAN_UP || G_ttyin) IF_ERROR_RETURN_POSSIBLE(return BC_STATUS_FAILURE); exit(1); } #if ENABLE_BC static NOINLINE BC_STATUS zbc_posix_error_fmt(const char *fmt, ...) { va_list p; // Are non-POSIX constructs totally ok? if (!(option_mask32 & (BC_FLAG_S|BC_FLAG_W))) RETURN_STATUS(BC_STATUS_SUCCESS); // yes va_start(p, fmt); bc_verror_msg(fmt, p); va_end(p); // Do we treat non-POSIX constructs as errors? if (!(option_mask32 & BC_FLAG_S)) RETURN_STATUS(BC_STATUS_SUCCESS); // no, it's a warning if (ENABLE_FEATURE_CLEAN_UP || G_ttyin) RETURN_STATUS(BC_STATUS_FAILURE); exit(1); } #define zbc_posix_error_fmt(...) (zbc_posix_error_fmt(__VA_ARGS__) COMMA_SUCCESS) #endif // We use error functions with "return bc_error(FMT[, PARAMS])" idiom. // This idiom begs for tail-call optimization, but for it to work, // function must not have caller-cleaned parameters on stack. // Unfortunately, vararg function API does exactly that on most arches. // Thus, use these shims for the cases when we have no vararg PARAMS: static ERRORFUNC int bc_error(const char *msg) { IF_ERROR_RETURN_POSSIBLE(return) bc_error_fmt("%s", msg); } static ERRORFUNC int bc_error_at(const char *msg) { const char *err_at = G.prs.lex_next_at; if (err_at) { IF_ERROR_RETURN_POSSIBLE(return) bc_error_fmt( "%s at '%.*s'", msg, (int)(strchrnul(err_at, '\n') - err_at), err_at ); } IF_ERROR_RETURN_POSSIBLE(return) bc_error_fmt("%s", msg); } static ERRORFUNC int bc_error_bad_character(char c) { if (!c) IF_ERROR_RETURN_POSSIBLE(return) bc_error("NUL character"); IF_ERROR_RETURN_POSSIBLE(return) bc_error_fmt("bad character '%c'", c); } #if ENABLE_BC static ERRORFUNC int bc_error_bad_function_definition(void) { IF_ERROR_RETURN_POSSIBLE(return) bc_error_at("bad function definition"); } #endif static ERRORFUNC int bc_error_bad_expression(void) { IF_ERROR_RETURN_POSSIBLE(return) bc_error_at("bad expression"); } static ERRORFUNC int bc_error_bad_assignment(void) { IF_ERROR_RETURN_POSSIBLE(return) bc_error_at( "bad assignment: left side must be variable or array element" ); } static ERRORFUNC int bc_error_bad_token(void) { IF_ERROR_RETURN_POSSIBLE(return) bc_error_at("bad token"); } static ERRORFUNC int bc_error_stack_has_too_few_elements(void) { IF_ERROR_RETURN_POSSIBLE(return) bc_error("stack has too few elements"); } static ERRORFUNC int bc_error_variable_is_wrong_type(void) { IF_ERROR_RETURN_POSSIBLE(return) bc_error("variable is wrong type"); } #if ENABLE_BC static BC_STATUS zbc_POSIX_requires(const char *msg) { RETURN_STATUS(zbc_posix_error_fmt("POSIX requires %s", msg)); } #define zbc_POSIX_requires(...) (zbc_POSIX_requires(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_POSIX_does_not_allow(const char *msg) { RETURN_STATUS(zbc_posix_error_fmt("%s%s", "POSIX does not allow ", msg)); } #define zbc_POSIX_does_not_allow(...) (zbc_POSIX_does_not_allow(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_POSIX_does_not_allow_bool_ops_this_is_bad(const char *msg) { RETURN_STATUS(zbc_posix_error_fmt("%s%s %s", "POSIX does not allow ", "boolean operators; this is bad:", msg)); } #define zbc_POSIX_does_not_allow_bool_ops_this_is_bad(...) (zbc_POSIX_does_not_allow_bool_ops_this_is_bad(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_POSIX_does_not_allow_empty_X_expression_in_for(const char *msg) { RETURN_STATUS(zbc_posix_error_fmt("%san empty %s expression in 'for()'", "POSIX does not allow ", msg)); } #define zbc_POSIX_does_not_allow_empty_X_expression_in_for(...) (zbc_POSIX_does_not_allow_empty_X_expression_in_for(__VA_ARGS__) COMMA_SUCCESS) #endif static void bc_vec_grow(BcVec *v, size_t n) { size_t cap = v->cap * 2; while (cap < v->len + n) cap *= 2; v->v = xrealloc(v->v, v->size * cap); v->cap = cap; } static void bc_vec_init(BcVec *v, size_t esize, BcVecFree dtor) { v->size = esize; v->cap = BC_VEC_START_CAP; v->len = 0; v->dtor = dtor; v->v = xmalloc(esize * BC_VEC_START_CAP); } static void bc_char_vec_init(BcVec *v) { bc_vec_init(v, sizeof(char), NULL); } static void bc_vec_expand(BcVec *v, size_t req) { if (v->cap < req) { v->v = xrealloc(v->v, v->size * req); v->cap = req; } } static void bc_vec_pop(BcVec *v) { v->len--; if (v->dtor) v->dtor(v->v + (v->size * v->len)); } static void bc_vec_npop(BcVec *v, size_t n) { if (!v->dtor) v->len -= n; else { size_t len = v->len - n; while (v->len > len) v->dtor(v->v + (v->size * --v->len)); } } static void bc_vec_pop_all(BcVec *v) { bc_vec_npop(v, v->len); } static size_t bc_vec_npush(BcVec *v, size_t n, const void *data) { size_t len = v->len; if (len + n > v->cap) bc_vec_grow(v, n); memmove(v->v + (v->size * len), data, v->size * n); v->len = len + n; return len; } static size_t bc_vec_push(BcVec *v, const void *data) { return bc_vec_npush(v, 1, data); //size_t len = v->len; //if (len >= v->cap) bc_vec_grow(v, 1); //memmove(v->v + (v->size * len), data, v->size); //v->len = len + 1; //return len; } // G.prog.results often needs "pop old operand, push result" idiom. // Can do this without a few extra ops static size_t bc_result_pop_and_push(const void *data) { BcVec *v = &G.prog.results; char *last; size_t len = v->len - 1; last = v->v + (v->size * len); if (v->dtor) v->dtor(last); memmove(last, data, v->size); return len; } static size_t bc_vec_pushByte(BcVec *v, char data) { return bc_vec_push(v, &data); } static size_t bc_vec_pushZeroByte(BcVec *v) { //return bc_vec_pushByte(v, '\0'); // better: return bc_vec_push(v, &const_int_0); } static void bc_vec_pushAt(BcVec *v, const void *data, size_t idx) { if (idx == v->len) bc_vec_push(v, data); else { char *ptr; if (v->len == v->cap) bc_vec_grow(v, 1); ptr = v->v + v->size * idx; memmove(ptr + v->size, ptr, v->size * (v->len++ - idx)); memmove(ptr, data, v->size); } } static void bc_vec_string(BcVec *v, size_t len, const char *str) { bc_vec_pop_all(v); bc_vec_expand(v, len + 1); memcpy(v->v, str, len); v->len = len; bc_vec_pushZeroByte(v); } static void *bc_vec_item(const BcVec *v, size_t idx) { return v->v + v->size * idx; } static void *bc_vec_item_rev(const BcVec *v, size_t idx) { return v->v + v->size * (v->len - idx - 1); } static void *bc_vec_top(const BcVec *v) { return v->v + v->size * (v->len - 1); } static FAST_FUNC void bc_vec_free(void *vec) { BcVec *v = (BcVec *) vec; bc_vec_pop_all(v); free(v->v); } static BcFunc* xc_program_func(size_t idx) { return bc_vec_item(&G.prog.fns, idx); } // BC_PROG_MAIN is zeroth element, so: #define xc_program_func_BC_PROG_MAIN() ((BcFunc*)(G.prog.fns.v)) #if ENABLE_BC static BcFunc* bc_program_current_func(void) { BcInstPtr *ip = bc_vec_top(&G.prog.exestack); BcFunc *func = xc_program_func(ip->func); return func; } #endif static char** xc_program_str(size_t idx) { #if ENABLE_BC if (IS_BC) { BcFunc *func = bc_program_current_func(); return bc_vec_item(&func->strs, idx); } #endif IF_DC(return bc_vec_item(&G.prog.strs, idx);) } static char** xc_program_const(size_t idx) { #if ENABLE_BC if (IS_BC) { BcFunc *func = bc_program_current_func(); return bc_vec_item(&func->consts, idx); } #endif IF_DC(return bc_vec_item(&G.prog.consts, idx);) } static int bc_id_cmp(const void *e1, const void *e2) { return strcmp(((const BcId *) e1)->name, ((const BcId *) e2)->name); } static FAST_FUNC void bc_id_free(void *id) { free(((BcId *) id)->name); } static size_t bc_map_find_ge(const BcVec *v, const void *ptr) { size_t low = 0, high = v->len; while (low < high) { size_t mid = (low + high) / 2; BcId *id = bc_vec_item(v, mid); int result = bc_id_cmp(ptr, id); if (result == 0) return mid; if (result < 0) high = mid; else low = mid + 1; } return low; } static int bc_map_insert(BcVec *v, const void *ptr, size_t *i) { size_t n = *i = bc_map_find_ge(v, ptr); if (n == v->len) bc_vec_push(v, ptr); else if (!bc_id_cmp(ptr, bc_vec_item(v, n))) return 0; // "was not inserted" else bc_vec_pushAt(v, ptr, n); return 1; // "was inserted" } static size_t bc_map_find_exact(const BcVec *v, const void *ptr) { size_t i = bc_map_find_ge(v, ptr); if (i >= v->len) return BC_VEC_INVALID_IDX; return bc_id_cmp(ptr, bc_vec_item(v, i)) ? BC_VEC_INVALID_IDX : i; } static void bc_num_setToZero(BcNum *n, size_t scale) { n->len = 0; n->neg = false; n->rdx = scale; } static void bc_num_zero(BcNum *n) { bc_num_setToZero(n, 0); } static void bc_num_one(BcNum *n) { bc_num_setToZero(n, 0); n->len = 1; n->num[0] = 1; } // Note: this also sets BcNum to zero static void bc_num_init(BcNum *n, size_t req) { req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE; //memset(n, 0, sizeof(BcNum)); - cleared by assignments below n->num = xmalloc(req); n->cap = req; n->rdx = 0; n->len = 0; n->neg = false; } static void bc_num_init_DEF_SIZE(BcNum *n) { bc_num_init(n, BC_NUM_DEF_SIZE); } static void bc_num_expand(BcNum *n, size_t req) { req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE; if (req > n->cap) { n->num = xrealloc(n->num, req); n->cap = req; } } static FAST_FUNC void bc_num_free(void *num) { free(((BcNum *) num)->num); } static void bc_num_copy(BcNum *d, BcNum *s) { if (d != s) { bc_num_expand(d, s->cap); d->len = s->len; d->neg = s->neg; d->rdx = s->rdx; memcpy(d->num, s->num, sizeof(BcDig) * d->len); } } static void bc_num_init_and_copy(BcNum *d, BcNum *s) { bc_num_init(d, s->len); bc_num_copy(d, s); } static BC_STATUS zbc_num_ulong_abs(BcNum *n, unsigned long *result_p) { size_t i; unsigned long result; result = 0; i = n->len; while (i > n->rdx) { unsigned long prev = result; result = result * 10 + n->num[--i]; // Even overflowed N*10 can still satisfy N*10>=N. For example, // 0x1ff00000 * 10 is 0x13f600000, // or 0x3f600000 truncated to 32 bits. Which is larger. // However, (N*10)/8 < N check is always correct. if ((result / 8) < prev) RETURN_STATUS(bc_error("overflow")); } *result_p = result; RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_num_ulong_abs(...) (zbc_num_ulong_abs(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_num_ulong(BcNum *n, unsigned long *result_p) { if (n->neg) RETURN_STATUS(bc_error("negative number")); RETURN_STATUS(zbc_num_ulong_abs(n, result_p)); } #define zbc_num_ulong(...) (zbc_num_ulong(__VA_ARGS__) COMMA_SUCCESS) #if ULONG_MAX == 0xffffffffUL // 10 digits: 4294967295 # define ULONG_NUM_BUFSIZE (10 > BC_NUM_DEF_SIZE ? 10 : BC_NUM_DEF_SIZE) #elif ULONG_MAX == 0xffffffffffffffffULL // 20 digits: 18446744073709551615 # define ULONG_NUM_BUFSIZE (20 > BC_NUM_DEF_SIZE ? 20 : BC_NUM_DEF_SIZE) #endif // minimum BC_NUM_DEF_SIZE, so that bc_num_expand() in bc_num_ulong2num() // would not hit realloc() code path - not good if num[] is not malloced static void bc_num_ulong2num(BcNum *n, unsigned long val) { BcDig *ptr; bc_num_zero(n); if (val == 0) return; bc_num_expand(n, ULONG_NUM_BUFSIZE); ptr = n->num; for (;;) { n->len++; *ptr++ = val % 10; val /= 10; if (val == 0) break; } } static void bc_num_subArrays(BcDig *restrict a, BcDig *restrict b, size_t len) { size_t i, j; for (i = 0; i < len; ++i) { a[i] -= b[i]; for (j = i; a[j] < 0;) { a[j++] += 10; a[j] -= 1; } } } static ssize_t bc_num_compare(BcDig *restrict a, BcDig *restrict b, size_t len) { size_t i = len; for (;;) { int c; if (i == 0) return 0; i--; c = a[i] - b[i]; if (c != 0) { i++; if (c < 0) return -i; return i; } } } #define BC_NUM_NEG(n, neg) ((((ssize_t)(n)) ^ -((ssize_t)(neg))) + (neg)) #define BC_NUM_ONE(n) ((n)->len == 1 && (n)->rdx == 0 && (n)->num[0] == 1) #define BC_NUM_INT(n) ((n)->len - (n)->rdx) //#define BC_NUM_AREQ(a, b) (BC_MAX((a)->rdx, (b)->rdx) + BC_MAX(BC_NUM_INT(a), BC_NUM_INT(b)) + 1) static /*ALWAYS_INLINE*/ size_t BC_NUM_AREQ(BcNum *a, BcNum *b) { return BC_MAX(a->rdx, b->rdx) + BC_MAX(BC_NUM_INT(a), BC_NUM_INT(b)) + 1; } //#define BC_NUM_MREQ(a, b, scale) (BC_NUM_INT(a) + BC_NUM_INT(b) + BC_MAX((scale), (a)->rdx + (b)->rdx) + 1) static /*ALWAYS_INLINE*/ size_t BC_NUM_MREQ(BcNum *a, BcNum *b, size_t scale) { return BC_NUM_INT(a) + BC_NUM_INT(b) + BC_MAX(scale, a->rdx + b->rdx) + 1; } static ssize_t bc_num_cmp(BcNum *a, BcNum *b) { size_t i, min, a_int, b_int, diff; BcDig *max_num, *min_num; bool a_max, neg; ssize_t cmp; if (a == b) return 0; if (a->len == 0) return BC_NUM_NEG(!!b->len, !b->neg); if (b->len == 0) return BC_NUM_NEG(1, a->neg); if (a->neg != b->neg) // signs of a and b differ // +a,-b = a>b = 1 or -a,+b = aneg - (int)a->neg; neg = a->neg; // 1 if both negative, 0 if both positive a_int = BC_NUM_INT(a); b_int = BC_NUM_INT(b); a_int -= b_int; if (a_int != 0) { if (neg) return - (ssize_t) a_int; return (ssize_t) a_int; } a_max = (a->rdx > b->rdx); if (a_max) { min = b->rdx; diff = a->rdx - b->rdx; max_num = a->num + diff; min_num = b->num; // neg = (a_max == neg); - NOP (maps 1->1 and 0->0) } else { min = a->rdx; diff = b->rdx - a->rdx; max_num = b->num + diff; min_num = a->num; neg = !neg; // same as "neg = (a_max == neg)" } cmp = bc_num_compare(max_num, min_num, b_int + min); if (cmp != 0) return BC_NUM_NEG(cmp, neg); for (max_num -= diff, i = diff - 1; i < diff; --i) { if (max_num[i]) return BC_NUM_NEG(1, neg); } return 0; } static void bc_num_truncate(BcNum *n, size_t places) { if (places == 0) return; n->rdx -= places; if (n->len != 0) { n->len -= places; memmove(n->num, n->num + places, n->len * sizeof(BcDig)); } } static void bc_num_extend(BcNum *n, size_t places) { size_t len = n->len + places; if (places != 0) { if (n->cap < len) bc_num_expand(n, len); memmove(n->num + places, n->num, sizeof(BcDig) * n->len); memset(n->num, 0, sizeof(BcDig) * places); n->len += places; n->rdx += places; } } static void bc_num_clean(BcNum *n) { while (n->len > 0 && n->num[n->len - 1] == 0) --n->len; if (n->len == 0) n->neg = false; else if (n->len < n->rdx) n->len = n->rdx; } static void bc_num_retireMul(BcNum *n, size_t scale, bool neg1, bool neg2) { if (n->rdx < scale) bc_num_extend(n, scale - n->rdx); else bc_num_truncate(n, n->rdx - scale); bc_num_clean(n); if (n->len != 0) n->neg = !neg1 != !neg2; } static void bc_num_split(BcNum *restrict n, size_t idx, BcNum *restrict a, BcNum *restrict b) { if (idx < n->len) { b->len = n->len - idx; a->len = idx; a->rdx = b->rdx = 0; memcpy(b->num, n->num + idx, b->len * sizeof(BcDig)); memcpy(a->num, n->num, idx * sizeof(BcDig)); } else { bc_num_zero(b); bc_num_copy(a, n); } bc_num_clean(a); bc_num_clean(b); } static BC_STATUS zbc_num_shift(BcNum *n, size_t places) { if (places == 0 || n->len == 0) RETURN_STATUS(BC_STATUS_SUCCESS); // This check makes sense only if size_t is (much) larger than BC_MAX_NUM. if (SIZE_MAX > (BC_MAX_NUM | 0xff)) { if (places + n->len > BC_MAX_NUM) RETURN_STATUS(bc_error("number too long: must be [1,"BC_MAX_NUM_STR"]")); } if (n->rdx >= places) n->rdx -= places; else { bc_num_extend(n, places - n->rdx); n->rdx = 0; } bc_num_clean(n); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_num_shift(...) (zbc_num_shift(__VA_ARGS__) COMMA_SUCCESS) typedef BC_STATUS (*BcNumBinaryOp)(BcNum *, BcNum *, BcNum *, size_t) FAST_FUNC; static BC_STATUS zbc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale, BcNumBinaryOp op, size_t req) { BcStatus s; BcNum num2, *ptr_a, *ptr_b; bool init = false; if (c == a) { ptr_a = &num2; memcpy(ptr_a, c, sizeof(BcNum)); init = true; } else ptr_a = a; if (c == b) { ptr_b = &num2; if (c != a) { memcpy(ptr_b, c, sizeof(BcNum)); init = true; } } else ptr_b = b; if (init) bc_num_init(c, req); else bc_num_expand(c, req); s = BC_STATUS_SUCCESS; IF_ERROR_RETURN_POSSIBLE(s =) op(ptr_a, ptr_b, c, scale); if (init) bc_num_free(&num2); RETURN_STATUS(s); } #define zbc_num_binary(...) (zbc_num_binary(__VA_ARGS__) COMMA_SUCCESS) static FAST_FUNC BC_STATUS zbc_num_a(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale); static FAST_FUNC BC_STATUS zbc_num_s(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale); static FAST_FUNC BC_STATUS zbc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale); static FAST_FUNC BC_STATUS zbc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale); static FAST_FUNC BC_STATUS zbc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale); static FAST_FUNC BC_STATUS zbc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale); static FAST_FUNC BC_STATUS zbc_num_add(BcNum *a, BcNum *b, BcNum *c, size_t scale) { BcNumBinaryOp op = (!a->neg == !b->neg) ? zbc_num_a : zbc_num_s; (void) scale; RETURN_STATUS(zbc_num_binary(a, b, c, false, op, BC_NUM_AREQ(a, b))); } static FAST_FUNC BC_STATUS zbc_num_sub(BcNum *a, BcNum *b, BcNum *c, size_t scale) { BcNumBinaryOp op = (!a->neg == !b->neg) ? zbc_num_s : zbc_num_a; (void) scale; RETURN_STATUS(zbc_num_binary(a, b, c, true, op, BC_NUM_AREQ(a, b))); } static FAST_FUNC BC_STATUS zbc_num_mul(BcNum *a, BcNum *b, BcNum *c, size_t scale) { size_t req = BC_NUM_MREQ(a, b, scale); RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_m, req)); } static FAST_FUNC BC_STATUS zbc_num_div(BcNum *a, BcNum *b, BcNum *c, size_t scale) { size_t req = BC_NUM_MREQ(a, b, scale); RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_d, req)); } static FAST_FUNC BC_STATUS zbc_num_mod(BcNum *a, BcNum *b, BcNum *c, size_t scale) { size_t req = BC_NUM_MREQ(a, b, scale); RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_rem, req)); } static FAST_FUNC BC_STATUS zbc_num_pow(BcNum *a, BcNum *b, BcNum *c, size_t scale) { RETURN_STATUS(zbc_num_binary(a, b, c, scale, zbc_num_p, a->len * b->len + 1)); } static const BcNumBinaryOp zxc_program_ops[] = { zbc_num_pow, zbc_num_mul, zbc_num_div, zbc_num_mod, zbc_num_add, zbc_num_sub, }; #define zbc_num_add(...) (zbc_num_add(__VA_ARGS__) COMMA_SUCCESS) #define zbc_num_sub(...) (zbc_num_sub(__VA_ARGS__) COMMA_SUCCESS) #define zbc_num_mul(...) (zbc_num_mul(__VA_ARGS__) COMMA_SUCCESS) #define zbc_num_div(...) (zbc_num_div(__VA_ARGS__) COMMA_SUCCESS) #define zbc_num_mod(...) (zbc_num_mod(__VA_ARGS__) COMMA_SUCCESS) #define zbc_num_pow(...) (zbc_num_pow(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_num_inv(BcNum *a, BcNum *b, size_t scale) { BcNum one; BcDig num[2]; one.cap = 2; one.num = num; bc_num_one(&one); RETURN_STATUS(zbc_num_div(&one, a, b, scale)); } #define zbc_num_inv(...) (zbc_num_inv(__VA_ARGS__) COMMA_SUCCESS) static FAST_FUNC BC_STATUS zbc_num_a(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) { BcDig *ptr, *ptr_a, *ptr_b, *ptr_c; size_t i, max, min_rdx, min_int, diff, a_int, b_int; unsigned carry; // Because this function doesn't need to use scale (per the bc spec), // I am hijacking it to say whether it's doing an add or a subtract. if (a->len == 0) { bc_num_copy(c, b); if (sub && c->len) c->neg = !c->neg; RETURN_STATUS(BC_STATUS_SUCCESS); } if (b->len == 0) { bc_num_copy(c, a); RETURN_STATUS(BC_STATUS_SUCCESS); } c->neg = a->neg; c->rdx = BC_MAX(a->rdx, b->rdx); min_rdx = BC_MIN(a->rdx, b->rdx); c->len = 0; if (a->rdx > b->rdx) { diff = a->rdx - b->rdx; ptr = a->num; ptr_a = a->num + diff; ptr_b = b->num; } else { diff = b->rdx - a->rdx; ptr = b->num; ptr_a = a->num; ptr_b = b->num + diff; } ptr_c = c->num; for (i = 0; i < diff; ++i, ++c->len) ptr_c[i] = ptr[i]; ptr_c += diff; a_int = BC_NUM_INT(a); b_int = BC_NUM_INT(b); if (a_int > b_int) { min_int = b_int; max = a_int; ptr = ptr_a; } else { min_int = a_int; max = b_int; ptr = ptr_b; } carry = 0; for (i = 0; i < min_rdx + min_int; ++i) { unsigned in = (unsigned)ptr_a[i] + (unsigned)ptr_b[i] + carry; carry = in / 10; ptr_c[i] = (BcDig)(in % 10); } for (; i < max + min_rdx; ++i) { unsigned in = (unsigned)ptr[i] + carry; carry = in / 10; ptr_c[i] = (BcDig)(in % 10); } c->len += i; if (carry != 0) c->num[c->len++] = (BcDig) carry; RETURN_STATUS(BC_STATUS_SUCCESS); // can't make void, see zbc_num_binary() } static FAST_FUNC BC_STATUS zbc_num_s(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) { ssize_t cmp; BcNum *minuend, *subtrahend; size_t start; bool aneg, bneg, neg; // Because this function doesn't need to use scale (per the bc spec), // I am hijacking it to say whether it's doing an add or a subtract. if (a->len == 0) { bc_num_copy(c, b); if (sub && c->len) c->neg = !c->neg; RETURN_STATUS(BC_STATUS_SUCCESS); } if (b->len == 0) { bc_num_copy(c, a); RETURN_STATUS(BC_STATUS_SUCCESS); } aneg = a->neg; bneg = b->neg; a->neg = b->neg = false; cmp = bc_num_cmp(a, b); a->neg = aneg; b->neg = bneg; if (cmp == 0) { bc_num_setToZero(c, BC_MAX(a->rdx, b->rdx)); RETURN_STATUS(BC_STATUS_SUCCESS); } if (cmp > 0) { neg = a->neg; minuend = a; subtrahend = b; } else { neg = b->neg; if (sub) neg = !neg; minuend = b; subtrahend = a; } bc_num_copy(c, minuend); c->neg = neg; if (c->rdx < subtrahend->rdx) { bc_num_extend(c, subtrahend->rdx - c->rdx); start = 0; } else start = c->rdx - subtrahend->rdx; bc_num_subArrays(c->num + start, subtrahend->num, subtrahend->len); bc_num_clean(c); RETURN_STATUS(BC_STATUS_SUCCESS); // can't make void, see zbc_num_binary() } static FAST_FUNC BC_STATUS zbc_num_k(BcNum *restrict a, BcNum *restrict b, BcNum *restrict c) #define zbc_num_k(...) (zbc_num_k(__VA_ARGS__) COMMA_SUCCESS) { BcStatus s; size_t max, max2; BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp; bool aone; if (a->len == 0 || b->len == 0) { bc_num_zero(c); RETURN_STATUS(BC_STATUS_SUCCESS); } aone = BC_NUM_ONE(a); if (aone || BC_NUM_ONE(b)) { bc_num_copy(c, aone ? b : a); RETURN_STATUS(BC_STATUS_SUCCESS); } if (a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN /* || a->len + b->len < BC_NUM_KARATSUBA_LEN - redundant check */ ) { size_t i, j, len; bc_num_expand(c, a->len + b->len + 1); memset(c->num, 0, sizeof(BcDig) * c->cap); c->len = len = 0; for (i = 0; i < b->len; ++i) { unsigned carry = 0; for (j = 0; j < a->len; ++j) { unsigned in = c->num[i + j]; in += (unsigned)a->num[j] * (unsigned)b->num[i] + carry; // note: compilers prefer _unsigned_ div/const carry = in / 10; c->num[i + j] = (BcDig)(in % 10); } c->num[i + j] += (BcDig) carry; len = BC_MAX(len, i + j + !!carry); #if ENABLE_FEATURE_BC_INTERACTIVE // a=2^1000000 // a*a <- without check below, this will not be interruptible if (G_interrupt) return BC_STATUS_FAILURE; #endif } c->len = len; RETURN_STATUS(BC_STATUS_SUCCESS); } max = BC_MAX(a->len, b->len); bc_num_init(&l1, max); bc_num_init(&h1, max); bc_num_init(&l2, max); bc_num_init(&h2, max); bc_num_init(&m1, max); bc_num_init(&m2, max); bc_num_init(&z0, max); bc_num_init(&z1, max); bc_num_init(&z2, max); bc_num_init(&temp, max + max); max2 = (max + 1) / 2; bc_num_split(a, max2, &l1, &h1); bc_num_split(b, max2, &l2, &h2); s = zbc_num_add(&h1, &l1, &m1, 0); if (s) goto err; s = zbc_num_add(&h2, &l2, &m2, 0); if (s) goto err; s = zbc_num_k(&h1, &h2, &z0); if (s) goto err; s = zbc_num_k(&m1, &m2, &z1); if (s) goto err; s = zbc_num_k(&l1, &l2, &z2); if (s) goto err; s = zbc_num_sub(&z1, &z0, &temp, 0); if (s) goto err; s = zbc_num_sub(&temp, &z2, &z1, 0); if (s) goto err; s = zbc_num_shift(&z0, max2 * 2); if (s) goto err; s = zbc_num_shift(&z1, max2); if (s) goto err; s = zbc_num_add(&z0, &z1, &temp, 0); if (s) goto err; s = zbc_num_add(&temp, &z2, c, 0); err: bc_num_free(&temp); bc_num_free(&z2); bc_num_free(&z1); bc_num_free(&z0); bc_num_free(&m2); bc_num_free(&m1); bc_num_free(&h2); bc_num_free(&l2); bc_num_free(&h1); bc_num_free(&l1); RETURN_STATUS(s); } static FAST_FUNC BC_STATUS zbc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { BcStatus s; BcNum cpa, cpb; size_t maxrdx = BC_MAX(a->rdx, b->rdx); scale = BC_MAX(scale, a->rdx); scale = BC_MAX(scale, b->rdx); scale = BC_MIN(a->rdx + b->rdx, scale); maxrdx = BC_MAX(maxrdx, scale); bc_num_init_and_copy(&cpa, a); bc_num_init_and_copy(&cpb, b); cpa.neg = cpb.neg = false; s = zbc_num_shift(&cpa, maxrdx); if (s) goto err; s = zbc_num_shift(&cpb, maxrdx); if (s) goto err; s = zbc_num_k(&cpa, &cpb, c); if (s) goto err; maxrdx += scale; bc_num_expand(c, c->len + maxrdx); if (c->len < maxrdx) { memset(c->num + c->len, 0, (c->cap - c->len) * sizeof(BcDig)); c->len += maxrdx; } c->rdx = maxrdx; bc_num_retireMul(c, scale, a->neg, b->neg); err: bc_num_free(&cpb); bc_num_free(&cpa); RETURN_STATUS(s); } #define zbc_num_m(...) (zbc_num_m(__VA_ARGS__) COMMA_SUCCESS) static FAST_FUNC BC_STATUS zbc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { BcStatus s; size_t len, end, i; BcNum cp; if (b->len == 0) RETURN_STATUS(bc_error("divide by zero")); if (a->len == 0) { bc_num_setToZero(c, scale); RETURN_STATUS(BC_STATUS_SUCCESS); } if (BC_NUM_ONE(b)) { bc_num_copy(c, a); bc_num_retireMul(c, scale, a->neg, b->neg); RETURN_STATUS(BC_STATUS_SUCCESS); } bc_num_init(&cp, BC_NUM_MREQ(a, b, scale)); bc_num_copy(&cp, a); len = b->len; if (len > cp.len) { bc_num_expand(&cp, len + 2); bc_num_extend(&cp, len - cp.len); } if (b->rdx > cp.rdx) bc_num_extend(&cp, b->rdx - cp.rdx); cp.rdx -= b->rdx; if (scale > cp.rdx) bc_num_extend(&cp, scale - cp.rdx); if (b->rdx == b->len) { for (;;) { if (len == 0) break; len--; if (b->num[len] != 0) break; } len++; } if (cp.cap == cp.len) bc_num_expand(&cp, cp.len + 1); // We want an extra zero in front to make things simpler. cp.num[cp.len++] = 0; end = cp.len - len; bc_num_expand(c, cp.len); bc_num_zero(c); memset(c->num + end, 0, (c->cap - end) * sizeof(BcDig)); c->rdx = cp.rdx; c->len = cp.len; s = BC_STATUS_SUCCESS; for (i = end - 1; i < end; --i) { BcDig *n, q; n = cp.num + i; for (q = 0; n[len] != 0 || bc_num_compare(n, b->num, len) >= 0; ++q) bc_num_subArrays(n, b->num, len); c->num[i] = q; #if ENABLE_FEATURE_BC_INTERACTIVE // a=2^100000 // scale=40000 // 1/a <- without check below, this will not be interruptible if (G_interrupt) { s = BC_STATUS_FAILURE; break; } #endif } bc_num_retireMul(c, scale, a->neg, b->neg); bc_num_free(&cp); RETURN_STATUS(s); } #define zbc_num_d(...) (zbc_num_d(__VA_ARGS__) COMMA_SUCCESS) static FAST_FUNC BC_STATUS zbc_num_r(BcNum *a, BcNum *b, BcNum *restrict c, BcNum *restrict d, size_t scale, size_t ts) { BcStatus s; BcNum temp; bool neg; if (b->len == 0) RETURN_STATUS(bc_error("divide by zero")); if (a->len == 0) { bc_num_setToZero(d, ts); RETURN_STATUS(BC_STATUS_SUCCESS); } bc_num_init(&temp, d->cap); s = zbc_num_d(a, b, c, scale); if (s) goto err; if (scale != 0) scale = ts; s = zbc_num_m(c, b, &temp, scale); if (s) goto err; s = zbc_num_sub(a, &temp, d, scale); if (s) goto err; if (ts > d->rdx && d->len) bc_num_extend(d, ts - d->rdx); neg = d->neg; bc_num_retireMul(d, ts, a->neg, b->neg); d->neg = neg; err: bc_num_free(&temp); RETURN_STATUS(s); } #define zbc_num_r(...) (zbc_num_r(__VA_ARGS__) COMMA_SUCCESS) static FAST_FUNC BC_STATUS zbc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { BcStatus s; BcNum c1; size_t ts = BC_MAX(scale + b->rdx, a->rdx), len = BC_NUM_MREQ(a, b, ts); bc_num_init(&c1, len); s = zbc_num_r(a, b, &c1, c, scale, ts); bc_num_free(&c1); RETURN_STATUS(s); } #define zbc_num_rem(...) (zbc_num_rem(__VA_ARGS__) COMMA_SUCCESS) static FAST_FUNC BC_STATUS zbc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { BcStatus s = BC_STATUS_SUCCESS; BcNum copy; unsigned long pow; size_t i, powrdx, resrdx; size_t a_rdx; bool neg; // GNU bc does not allow 2^2.0 - we do for (i = 0; i < b->rdx; i++) if (b->num[i] != 0) RETURN_STATUS(bc_error("not an integer")); // a^b for non-integer b (for a>0) can be implemented as exp(ln(a)*b). // Possibly better precision would be given by a^int(b) * exp(ln(a)*frac(b)). if (b->len == 0) { bc_num_one(c); RETURN_STATUS(BC_STATUS_SUCCESS); } if (a->len == 0) { bc_num_setToZero(c, scale); RETURN_STATUS(BC_STATUS_SUCCESS); } if (BC_NUM_ONE(b)) { if (!b->neg) bc_num_copy(c, a); else s = zbc_num_inv(a, c, scale); RETURN_STATUS(s); } neg = b->neg; s = zbc_num_ulong_abs(b, &pow); if (s) RETURN_STATUS(s); // b is not used beyond this point bc_num_init_and_copy(©, a); a_rdx = a->rdx; // pull it into a CPU register (hopefully) // a is not used beyond this point if (!neg) { unsigned long new_scale; if (a_rdx > scale) scale = a_rdx; new_scale = a_rdx * pow; // Don't fall for multiplication overflow. Example: // 0.01^2147483648 a_rdx:2 pow:0x80000000, 32bit mul is 0. //not that it matters with current algorithm, it would OOM on such large powers, //but it can be improved to detect zero results etc. Example: with scale=0, //result of 0.01^N for any N>1 is 0: 0.01^2 = 0.0001 ~= 0.00 (trunc to scale) //then this would matter: // if a_rdx != 0 and new_scale < pow, we had overflow, // correct "new_scale" value is larger than ULONG_MAX, // thus larger than any possible current value of "scale", // thus "scale = new_scale" should not be done: if (a_rdx == 0 || new_scale >= pow) if (new_scale < scale) scale = new_scale; } for (powrdx = a_rdx; !(pow & 1); pow >>= 1) { powrdx <<= 1; s = zbc_num_mul(©, ©, ©, powrdx); if (s) goto err; // Not needed: zbc_num_mul() has a check for ^C: //if (G_interrupt) { // s = BC_STATUS_FAILURE; // goto err; //} } bc_num_copy(c, ©); for (resrdx = powrdx, pow >>= 1; pow != 0; pow >>= 1) { powrdx <<= 1; s = zbc_num_mul(©, ©, ©, powrdx); if (s) goto err; if (pow & 1) { resrdx += powrdx; s = zbc_num_mul(c, ©, c, resrdx); if (s) goto err; } // Not needed: zbc_num_mul() has a check for ^C: //if (G_interrupt) { // s = BC_STATUS_FAILURE; // goto err; //} } if (neg) { s = zbc_num_inv(c, c, scale); if (s) goto err; } if (c->rdx > scale) bc_num_truncate(c, c->rdx - scale); // We can't use bc_num_clean() here. for (i = 0; i < c->len; ++i) if (c->num[i] != 0) goto skip; bc_num_setToZero(c, scale); skip: err: bc_num_free(©); RETURN_STATUS(s); } #define zbc_num_p(...) (zbc_num_p(__VA_ARGS__) COMMA_SUCCESS) static NOINLINE BC_STATUS zbc_num_sqrt(BcNum *a, BcNum *restrict b, size_t scale) { BcStatus s; BcNum num1, num2, half, f, fprime, *x0, *x1, *temp; BcDig half_digs[1]; size_t pow, len, digs, digs1, resrdx, req, times; ssize_t cmp, cmp1, cmp2; req = BC_MAX(scale, a->rdx) + ((BC_NUM_INT(a) + 1) >> 1) + 1; bc_num_expand(b, req); if (a->len == 0) { bc_num_setToZero(b, scale); RETURN_STATUS(BC_STATUS_SUCCESS); } if (a->neg) { RETURN_STATUS(bc_error("negative number")); } if (BC_NUM_ONE(a)) { bc_num_one(b); bc_num_extend(b, scale); RETURN_STATUS(BC_STATUS_SUCCESS); } scale = BC_MAX(scale, a->rdx) + 1; len = a->len + scale; bc_num_init(&num1, len); bc_num_init(&num2, len); half.cap = ARRAY_SIZE(half_digs); half.num = half_digs; bc_num_one(&half); half_digs[0] = 5; half.rdx = 1; bc_num_init(&f, len); bc_num_init(&fprime, len); x0 = &num1; x1 = &num2; bc_num_one(x0); pow = BC_NUM_INT(a); if (pow) { if (pow & 1) x0->num[0] = 2; else x0->num[0] = 6; pow -= 2 - (pow & 1); bc_num_extend(x0, pow); // Make sure to move the radix back. x0->rdx -= pow; } x0->rdx = digs = digs1 = times = 0; resrdx = scale + 2; len = x0->len + resrdx - 1; cmp = 1; cmp1 = cmp2 = SSIZE_MAX; do { s = zbc_num_div(a, x0, &f, resrdx); if (s) goto err; s = zbc_num_add(x0, &f, &fprime, resrdx); if (s) goto err; s = zbc_num_mul(&fprime, &half, x1, resrdx); if (s) goto err; cmp = bc_num_cmp(x1, x0); digs = x1->len - (unsigned long long) llabs(cmp); if (cmp == cmp2 && digs == digs1) times += 1; else times = 0; resrdx += times > 4; cmp2 = cmp1; cmp1 = cmp; digs1 = digs; temp = x0; x0 = x1; x1 = temp; } while (cmp != 0 || digs < len); bc_num_copy(b, x0); scale -= 1; if (b->rdx > scale) bc_num_truncate(b, b->rdx - scale); err: bc_num_free(&fprime); bc_num_free(&f); bc_num_free(&num2); bc_num_free(&num1); RETURN_STATUS(s); } #define zbc_num_sqrt(...) (zbc_num_sqrt(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_num_divmod(BcNum *a, BcNum *b, BcNum *c, BcNum *d, size_t scale) { BcStatus s; BcNum num2, *ptr_a; bool init = false; size_t ts = BC_MAX(scale + b->rdx, a->rdx), len = BC_NUM_MREQ(a, b, ts); if (c == a) { memcpy(&num2, c, sizeof(BcNum)); ptr_a = &num2; bc_num_init(c, len); init = true; } else { ptr_a = a; bc_num_expand(c, len); } s = zbc_num_r(ptr_a, b, c, d, scale, ts); if (init) bc_num_free(&num2); RETURN_STATUS(s); } #define zbc_num_divmod(...) (zbc_num_divmod(__VA_ARGS__) COMMA_SUCCESS) #if ENABLE_DC static BC_STATUS zdc_num_modexp(BcNum *a, BcNum *b, BcNum *c, BcNum *restrict d) { BcStatus s; BcNum base, exp, two, temp; BcDig two_digs[1]; if (c->len == 0) RETURN_STATUS(bc_error("divide by zero")); if (a->rdx || b->rdx || c->rdx) RETURN_STATUS(bc_error("not an integer")); if (b->neg) RETURN_STATUS(bc_error("negative number")); bc_num_expand(d, c->len); bc_num_init(&base, c->len); bc_num_init(&exp, b->len); bc_num_init(&temp, b->len); two.cap = ARRAY_SIZE(two_digs); two.num = two_digs; bc_num_one(&two); two_digs[0] = 2; bc_num_one(d); s = zbc_num_rem(a, c, &base, 0); if (s) goto err; bc_num_copy(&exp, b); while (exp.len != 0) { s = zbc_num_divmod(&exp, &two, &exp, &temp, 0); if (s) goto err; if (BC_NUM_ONE(&temp)) { s = zbc_num_mul(d, &base, &temp, 0); if (s) goto err; s = zbc_num_rem(&temp, c, d, 0); if (s) goto err; } s = zbc_num_mul(&base, &base, &temp, 0); if (s) goto err; s = zbc_num_rem(&temp, c, &base, 0); if (s) goto err; } err: bc_num_free(&temp); bc_num_free(&exp); bc_num_free(&base); RETURN_STATUS(s); } #define zdc_num_modexp(...) (zdc_num_modexp(__VA_ARGS__) COMMA_SUCCESS) #endif // ENABLE_DC static FAST_FUNC void bc_string_free(void *string) { free(*(char**)string); } static void bc_func_init(BcFunc *f) { bc_char_vec_init(&f->code); IF_BC(bc_vec_init(&f->labels, sizeof(size_t), NULL);) IF_BC(bc_vec_init(&f->autos, sizeof(BcId), bc_id_free);) IF_BC(bc_vec_init(&f->strs, sizeof(char *), bc_string_free);) IF_BC(bc_vec_init(&f->consts, sizeof(char *), bc_string_free);) IF_BC(f->nparams = 0;) } static FAST_FUNC void bc_func_free(void *func) { BcFunc *f = (BcFunc *) func; bc_vec_free(&f->code); IF_BC(bc_vec_free(&f->labels);) IF_BC(bc_vec_free(&f->autos);) IF_BC(bc_vec_free(&f->strs);) IF_BC(bc_vec_free(&f->consts);) } static void bc_array_expand(BcVec *a, size_t len); static void bc_array_init(BcVec *a, bool nums) { if (nums) bc_vec_init(a, sizeof(BcNum), bc_num_free); else bc_vec_init(a, sizeof(BcVec), bc_vec_free); bc_array_expand(a, 1); } static void bc_array_expand(BcVec *a, size_t len) { if (a->dtor == bc_num_free // && a->size == sizeof(BcNum) - always true ) { BcNum n; while (len > a->len) { bc_num_init_DEF_SIZE(&n); bc_vec_push(a, &n); } } else { BcVec v; while (len > a->len) { bc_array_init(&v, true); bc_vec_push(a, &v); } } } static void bc_array_copy(BcVec *d, const BcVec *s) { BcNum *dnum, *snum; size_t i; bc_vec_pop_all(d); bc_vec_expand(d, s->cap); d->len = s->len; dnum = (void*)d->v; snum = (void*)s->v; for (i = 0; i < s->len; i++, dnum++, snum++) { bc_num_init_and_copy(dnum, snum); } } #if ENABLE_DC static void dc_result_copy(BcResult *d, BcResult *src) { d->t = src->t; switch (d->t) { case XC_RESULT_TEMP: case XC_RESULT_IBASE: case XC_RESULT_SCALE: case XC_RESULT_OBASE: bc_num_init_and_copy(&d->d.n, &src->d.n); break; case XC_RESULT_VAR: case XC_RESULT_ARRAY: case XC_RESULT_ARRAY_ELEM: d->d.id.name = xstrdup(src->d.id.name); break; case XC_RESULT_CONSTANT: case XC_RESULT_STR: memcpy(&d->d.n, &src->d.n, sizeof(BcNum)); break; default: // placate compiler // BC_RESULT_VOID, BC_RESULT_LAST, BC_RESULT_ONE - do not happen break; } } #endif // ENABLE_DC static FAST_FUNC void bc_result_free(void *result) { BcResult *r = (BcResult *) result; switch (r->t) { case XC_RESULT_TEMP: IF_BC(case BC_RESULT_VOID:) case XC_RESULT_IBASE: case XC_RESULT_SCALE: case XC_RESULT_OBASE: bc_num_free(&r->d.n); break; case XC_RESULT_VAR: case XC_RESULT_ARRAY: case XC_RESULT_ARRAY_ELEM: free(r->d.id.name); break; default: // Do nothing. break; } } static int bad_input_byte(char c) { if ((c < ' ' && c != '\t' && c != '\r' && c != '\n') // also allow '\v' '\f'? || c > 0x7e ) { bc_error_fmt("illegal character 0x%02x", c); return 1; } return 0; } static void xc_read_line(BcVec *vec, FILE *fp) { again: bc_vec_pop_all(vec); fflush_and_check(); #if ENABLE_FEATURE_BC_INTERACTIVE if (G_interrupt) { // ^C was pressed if (fp != stdin) { // ^C while running a script (bc SCRIPT): die. // We do not return to interactive prompt: // user might be running us from a shell, // and SCRIPT might be intended to terminate // (e.g. contain a "halt" stmt). // ^C dropping user into a bc prompt instead of // the shell would be unexpected. xfunc_die(); } // There was ^C while running calculations G_interrupt = 0; // GNU bc says "interrupted execution." (to stdout, not stderr) // GNU dc says "Interrupt!" puts("\ninterrupted execution"); } # if ENABLE_FEATURE_EDITING if (G_ttyin && fp == stdin) { int n, i; if (!G.line_input_state) G.line_input_state = new_line_input_t(DO_HISTORY); # define line_buf bb_common_bufsiz1 n = read_line_input(G.line_input_state, "", line_buf, COMMON_BUFSIZE); if (n <= 0) { // read errors or EOF, or ^D, or ^C //GNU bc prints this on ^C: //if (n == 0) // ^C // puts("(interrupt) Exiting bc."); bc_vec_pushZeroByte(vec); return; } i = 0; for (;;) { char c = line_buf[i++]; if (c == '\0') break; if (bad_input_byte(c)) goto again; } bc_vec_string(vec, n, line_buf); # undef line_buf } else # endif #endif { int c; bool bad_chars = 0; do { get_char: #if ENABLE_FEATURE_BC_INTERACTIVE if (G_interrupt) { // ^C was pressed: ignore entire line, get another one goto again; } #endif c = fgetc(fp); if (c == '\0') goto get_char; if (c == EOF) { if (ferror(fp)) bb_simple_perror_msg_and_die("input error"); // Note: EOF does not append '\n' break; } bad_chars |= bad_input_byte(c); bc_vec_pushByte(vec, (char)c); } while (c != '\n'); if (bad_chars) { // Bad chars on this line if (!G.prs.lex_filename) { // stdin // ignore entire line, get another one goto again; } bb_perror_msg_and_die("file '%s' is not text", G.prs.lex_filename); } bc_vec_pushZeroByte(vec); } } // // Parsing routines // // "Input numbers may contain the characters 0-9 and A-Z. // (Note: They must be capitals. Lower case letters are variable names.) // Single digit numbers always have the value of the digit regardless of // the value of ibase. (i.e. A = 10.) For multi-digit numbers, bc changes // all input digits greater or equal to ibase to the value of ibase-1. // This makes the number ZZZ always be the largest 3 digit number of the // input base." static bool xc_num_strValid(const char *val) { bool radix = false; for (;;) { BcDig c = *val++; if (c == '\0') break; if (c == '.') { if (radix) return false; radix = true; continue; } if ((c < '0' || c > '9') && (c < 'A' || c > 'Z')) return false; } return true; } // Note: n is already "bc_num_zero()"ed, // leading zeroes in "val" are removed static void bc_num_parseDecimal(BcNum *n, const char *val) { size_t len, i; const char *ptr; len = strlen(val); if (len == 0) return; bc_num_expand(n, len + 1); // +1 for e.g. "A" converting into 10 ptr = strchr(val, '.'); n->rdx = 0; if (ptr != NULL) n->rdx = (size_t)((val + len) - (ptr + 1)); for (i = 0; val[i]; ++i) { if (val[i] != '0' && val[i] != '.') { // Not entirely zero value - convert it, and exit if (len == 1) { unsigned c = val[0] - '0'; n->len = 1; if (c > 9) { // A-Z => 10-36 n->len = 2; c -= ('A' - '9' - 1); n->num[1] = c/10; c = c%10; } n->num[0] = c; break; } i = len - 1; for (;;) { char c = val[i] - '0'; if (c > 9) // A-Z => 9 c = 9; n->num[n->len] = c; n->len++; skip_dot: if (i == 0) break; if (val[--i] == '.') goto skip_dot; } break; } } // if for() exits without hitting if(), the value is entirely zero } // Note: n is already "bc_num_zero()"ed, // leading zeroes in "val" are removed static void bc_num_parseBase(BcNum *n, const char *val, unsigned base_t) { BcStatus s; BcNum mult, result; BcNum temp; BcNum base; BcDig temp_digs[ULONG_NUM_BUFSIZE]; BcDig base_digs[ULONG_NUM_BUFSIZE]; size_t digits; bc_num_init_DEF_SIZE(&mult); temp.cap = ARRAY_SIZE(temp_digs); temp.num = temp_digs; base.cap = ARRAY_SIZE(base_digs); base.num = base_digs; bc_num_ulong2num(&base, base_t); base_t--; for (;;) { unsigned v; char c; c = *val++; if (c == '\0') goto int_err; if (c == '.') break; v = (unsigned)(c <= '9' ? c - '0' : c - 'A' + 10); if (v > base_t) v = base_t; s = zbc_num_mul(n, &base, &mult, 0); if (s) goto int_err; bc_num_ulong2num(&temp, v); s = zbc_num_add(&mult, &temp, n, 0); if (s) goto int_err; } bc_num_init(&result, base.len); //bc_num_zero(&result); - already is bc_num_one(&mult); digits = 0; for (;;) { unsigned v; char c; c = *val++; if (c == '\0') break; digits++; v = (unsigned)(c <= '9' ? c - '0' : c - 'A' + 10); if (v > base_t) v = base_t; s = zbc_num_mul(&result, &base, &result, 0); if (s) goto err; bc_num_ulong2num(&temp, v); s = zbc_num_add(&result, &temp, &result, 0); if (s) goto err; s = zbc_num_mul(&mult, &base, &mult, 0); if (s) goto err; } s = zbc_num_div(&result, &mult, &result, digits); if (s) goto err; s = zbc_num_add(n, &result, n, digits); if (s) goto err; if (n->len != 0) { if (n->rdx < digits) bc_num_extend(n, digits - n->rdx); } else bc_num_zero(n); err: bc_num_free(&result); int_err: bc_num_free(&mult); } static BC_STATUS zxc_num_parse(BcNum *n, const char *val, unsigned base_t) { size_t i; if (!xc_num_strValid(val)) RETURN_STATUS(bc_error("bad number string")); bc_num_zero(n); while (*val == '0') val++; for (i = 0; ; ++i) { if (val[i] == '\0') RETURN_STATUS(BC_STATUS_SUCCESS); if (val[i] != '.' && val[i] != '0') break; } if (base_t == 10 || val[1] == '\0') // Decimal, or single-digit number bc_num_parseDecimal(n, val); else bc_num_parseBase(n, val, base_t); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zxc_num_parse(...) (zxc_num_parse(__VA_ARGS__) COMMA_SUCCESS) // p->lex_inbuf points to the current string to be parsed. // if p->lex_inbuf points to '\0', it's either EOF or it points after // last processed line's terminating '\n' (and more reading needs to be done // to get next character). // // If you are in a situation where that is a possibility, call peek_inbuf(). // If necessary, it performs more reading and changes p->lex_inbuf, // then it returns *p->lex_inbuf (which will be '\0' only if it's EOF). // After it, just referencing *p->lex_inbuf is valid, and if it wasn't '\0', // it's ok to do p->lex_inbuf++ once without end-of-buffer checking. // // eat_inbuf() is equvalent to "peek_inbuf(); if (c) p->lex_inbuf++": // it returns current char and advances the pointer (if not EOF). // After eat_inbuf(), referencing p->lex_inbuf[-1] and *p->lex_inbuf is valid. // // In many cases, you can use fast *p->lex_inbuf instead of peek_inbuf(): // unless prev char might have been '\n', *p->lex_inbuf is '\0' ONLY // on real EOF, not end-of-buffer. // // bc cases to test interactively: // 1 #comment\ - prints "1" at once (comment is not continued) // 1 #comment/* - prints "1" at once // 1 #comment" - prints "1" at once // 1\#comment - error at once (\ is not a line continuation) // 1 + /*"*/2 - prints "3" at once // 1 + /*#*/2 - prints "3" at once // "str\" - prints "str\" at once // "str#" - prints "str#" at once // "str/*" - prints "str/*" at once // "str#\ - waits for second line // end" - ...prints "str#\end" static char peek_inbuf(void) { if (*G.prs.lex_inbuf == '\0' && G.prs.lex_input_fp ) { xc_read_line(&G.input_buffer, G.prs.lex_input_fp); G.prs.lex_inbuf = G.input_buffer.v; if (G.input_buffer.len <= 1) // on EOF, len is 1 (NUL byte) G.prs.lex_input_fp = NULL; } return *G.prs.lex_inbuf; } static char eat_inbuf(void) { char c = peek_inbuf(); if (c) G.prs.lex_inbuf++; return c; } static void xc_lex_lineComment(void) { BcParse *p = &G.prs; char c; // Try: echo -n '#foo' | bc p->lex = XC_LEX_WHITESPACE; // Not peek_inbuf(): we depend on input being done in whole lines: // '\0' which isn't the EOF can only be seen after '\n'. while ((c = *p->lex_inbuf) != '\n' && c != '\0') p->lex_inbuf++; } static void xc_lex_whitespace(void) { BcParse *p = &G.prs; p->lex = XC_LEX_WHITESPACE; for (;;) { // We depend here on input being done in whole lines: // '\0' which isn't the EOF can only be seen after '\n'. char c = *p->lex_inbuf; if (c == '\n') // this is XC_LEX_NLINE, not XC_LEX_WHITESPACE break; if (!isspace(c)) break; p->lex_inbuf++; } } static BC_STATUS zxc_lex_number(char last) { BcParse *p = &G.prs; bool pt; char last_valid_ch; bc_vec_pop_all(&p->lex_strnumbuf); bc_vec_pushByte(&p->lex_strnumbuf, last); // bc: "Input numbers may contain the characters 0-9 and A-Z. // (Note: They must be capitals. Lower case letters are variable names.) // Single digit numbers always have the value of the digit regardless of // the value of ibase. (i.e. A = 10.) For multi-digit numbers, bc changes // all input digits greater or equal to ibase to the value of ibase-1. // This makes the number ZZZ always be the largest 3 digit number of the // input base." // dc only allows A-F, the rules about single-char and multi-char are the same. last_valid_ch = (IS_BC ? 'Z' : 'F'); pt = (last == '.'); p->lex = XC_LEX_NUMBER; for (;;) { // We depend here on input being done in whole lines: // '\0' which isn't the EOF can only be seen after '\n'. char c = *p->lex_inbuf; check_c: if (c == '\0') break; if (c == '\\' && p->lex_inbuf[1] == '\n') { p->lex_inbuf += 2; p->lex_line++; dbg_lex("++p->lex_line=%zd", p->lex_line); c = peek_inbuf(); // force next line to be read goto check_c; } if (!isdigit(c) && (c < 'A' || c > last_valid_ch)) { if (c != '.') break; // if '.' was already seen, stop on second one: if (pt) break; pt = true; } // c is one of "0-9A-Z." last = c; bc_vec_push(&p->lex_strnumbuf, p->lex_inbuf); p->lex_inbuf++; } if (last == '.') // remove trailing '.' if any bc_vec_pop(&p->lex_strnumbuf); bc_vec_pushZeroByte(&p->lex_strnumbuf); G.err_line = G.prs.lex_line; RETURN_STATUS(BC_STATUS_SUCCESS); } #define zxc_lex_number(...) (zxc_lex_number(__VA_ARGS__) COMMA_SUCCESS) static void xc_lex_name(void) { BcParse *p = &G.prs; size_t i; const char *buf; p->lex = XC_LEX_NAME; // Since names can't cross lines with \, // we depend on the fact that whole line is in the buffer i = 0; buf = p->lex_inbuf - 1; for (;;) { char c = buf[i]; if ((c < 'a' || c > 'z') && !isdigit(c) && c != '_') break; i++; } #if 0 // We do not protect against people with gigabyte-long names // This check makes sense only if size_t is (much) larger than BC_MAX_STRING. if (SIZE_MAX > (BC_MAX_STRING | 0xff)) { if (i > BC_MAX_STRING) return bc_error("name too long: must be [1,"BC_MAX_STRING_STR"]"); } #endif bc_vec_string(&p->lex_strnumbuf, i, buf); // Increment the index. We minus 1 because it has already been incremented. p->lex_inbuf += i - 1; //return BC_STATUS_SUCCESS; } IF_BC(static BC_STATUS zbc_lex_token(void);) IF_DC(static BC_STATUS zdc_lex_token(void);) #define zbc_lex_token(...) (zbc_lex_token(__VA_ARGS__) COMMA_SUCCESS) #define zdc_lex_token(...) (zdc_lex_token(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_lex_next(void) { BcParse *p = &G.prs; BcStatus s; G.err_line = p->lex_line; p->lex_last = p->lex; //why? // if (p->lex_last == XC_LEX_EOF) // RETURN_STATUS(bc_error("end of file")); // Loop until failure or we don't have whitespace. This // is so the parser doesn't get inundated with whitespace. // Comments are also XC_LEX_WHITESPACE tokens and eaten here. s = BC_STATUS_SUCCESS; do { if (*p->lex_inbuf == '\0') { p->lex = XC_LEX_EOF; if (peek_inbuf() == '\0') RETURN_STATUS(BC_STATUS_SUCCESS); } p->lex_next_at = p->lex_inbuf; dbg_lex("next string to parse:'%.*s'", (int)(strchrnul(p->lex_next_at, '\n') - p->lex_next_at), p->lex_next_at ); if (IS_BC) { IF_BC(s = zbc_lex_token()); } else { IF_DC(s = zdc_lex_token()); } } while (!s && p->lex == XC_LEX_WHITESPACE); dbg_lex("p->lex from string:%d", p->lex); RETURN_STATUS(s); } #define zxc_lex_next(...) (zxc_lex_next(__VA_ARGS__) COMMA_SUCCESS) #if ENABLE_BC static BC_STATUS zbc_lex_skip_if_at_NLINE(void) { if (G.prs.lex == XC_LEX_NLINE) RETURN_STATUS(zxc_lex_next()); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_lex_skip_if_at_NLINE(...) (zbc_lex_skip_if_at_NLINE(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_lex_next_and_skip_NLINE(void) { BcStatus s; s = zxc_lex_next(); if (s) RETURN_STATUS(s); // if(cond)stmt is accepted too (but not 2+ newlines) s = zbc_lex_skip_if_at_NLINE(); RETURN_STATUS(s); } #define zbc_lex_next_and_skip_NLINE(...) (zbc_lex_next_and_skip_NLINE(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_lex_identifier(void) { BcParse *p = &G.prs; BcStatus s; unsigned i; const char *buf = p->lex_inbuf - 1; for (i = 0; i < ARRAY_SIZE(bc_lex_kws); ++i) { const char *keyword8 = bc_lex_kws[i].name8; unsigned j = 0; while (buf[j] != '\0' && buf[j] == keyword8[j]) { j++; if (j == 8) goto match; } if (keyword8[j] != '\0') continue; match: // buf starts with keyword bc_lex_kws[i] if (isalnum(buf[j]) || buf[j]=='_') continue; // "ifz" does not match "if" keyword, "if." does p->lex = BC_LEX_KEY_1st_keyword + i; if (!keyword_is_POSIX(i)) { s = zbc_posix_error_fmt("%sthe '%.8s' keyword", "POSIX does not allow ", bc_lex_kws[i].name8); if (s) RETURN_STATUS(s); } // We minus 1 because the index has already been incremented. p->lex_inbuf += j - 1; RETURN_STATUS(BC_STATUS_SUCCESS); } xc_lex_name(); s = BC_STATUS_SUCCESS; if (p->lex_strnumbuf.len > 2) { // Prevent this: // >>> qwe=1 // bc: POSIX only allows one character names; this is bad: 'qwe=1 // ' unsigned len = strchrnul(buf, '\n') - buf; s = zbc_posix_error_fmt("POSIX only allows one character names; this is bad: '%.*s'", len, buf); } RETURN_STATUS(s); } #define zbc_lex_identifier(...) (zbc_lex_identifier(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_lex_string(void) { BcParse *p = &G.prs; p->lex = XC_LEX_STR; bc_vec_pop_all(&p->lex_strnumbuf); for (;;) { char c = peek_inbuf(); // strings can cross lines if (c == '\0') { RETURN_STATUS(bc_error("unterminated string")); } if (c == '"') break; if (c == '\n') { p->lex_line++; dbg_lex("++p->lex_line=%zd", p->lex_line); } bc_vec_push(&p->lex_strnumbuf, p->lex_inbuf); p->lex_inbuf++; } bc_vec_pushZeroByte(&p->lex_strnumbuf); p->lex_inbuf++; G.err_line = p->lex_line; RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_lex_string(...) (zbc_lex_string(__VA_ARGS__) COMMA_SUCCESS) static void parse_lex_by_checking_eq_sign(unsigned with_and_without) { BcParse *p = &G.prs; if (*p->lex_inbuf == '=') { // ^^^ not using peek_inbuf() since '==' etc can't be split across lines p->lex_inbuf++; with_and_without >>= 8; // store "with" value } // else store "without" value p->lex = (with_and_without & 0xff); } #define parse_lex_by_checking_eq_sign(with, without) \ parse_lex_by_checking_eq_sign(((with)<<8)|(without)) static BC_STATUS zbc_lex_comment(void) { BcParse *p = &G.prs; p->lex = XC_LEX_WHITESPACE; // here lex_inbuf is at '*' of opening comment delimiter for (;;) { char c; p->lex_inbuf++; c = peek_inbuf(); check_star: if (c == '*') { p->lex_inbuf++; c = *p->lex_inbuf; // no need to peek_inbuf() if (c == '/') break; goto check_star; } if (c == '\0') { RETURN_STATUS(bc_error("unterminated comment")); } if (c == '\n') { p->lex_line++; dbg_lex("++p->lex_line=%zd", p->lex_line); } } p->lex_inbuf++; // skip trailing '/' G.err_line = p->lex_line; RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_lex_comment(...) (zbc_lex_comment(__VA_ARGS__) COMMA_SUCCESS) #undef zbc_lex_token static BC_STATUS zbc_lex_token(void) { BcParse *p = &G.prs; BcStatus s = BC_STATUS_SUCCESS; char c = eat_inbuf(); char c2; // This is the workhorse of the lexer. switch (c) { // case '\0': // probably never reached // p->lex_inbuf--; // p->lex = XC_LEX_EOF; // break; case '\n': p->lex_line++; dbg_lex("++p->lex_line=%zd", p->lex_line); p->lex = XC_LEX_NLINE; break; case '\t': case '\v': case '\f': case '\r': case ' ': xc_lex_whitespace(); break; case '!': parse_lex_by_checking_eq_sign(XC_LEX_OP_REL_NE, BC_LEX_OP_BOOL_NOT); if (p->lex == BC_LEX_OP_BOOL_NOT) { s = zbc_POSIX_does_not_allow_bool_ops_this_is_bad("!"); if (s) RETURN_STATUS(s); } break; case '"': s = zbc_lex_string(); break; case '#': s = zbc_POSIX_does_not_allow("'#' script comments"); if (s) RETURN_STATUS(s); xc_lex_lineComment(); break; case '%': parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_MODULUS, XC_LEX_OP_MODULUS); break; case '&': c2 = *p->lex_inbuf; if (c2 == '&') { s = zbc_POSIX_does_not_allow_bool_ops_this_is_bad("&&"); if (s) RETURN_STATUS(s); p->lex_inbuf++; p->lex = BC_LEX_OP_BOOL_AND; } else { p->lex = XC_LEX_INVALID; s = bc_error_bad_character('&'); } break; case '(': case ')': p->lex = (BcLexType)(c - '(' + BC_LEX_LPAREN); break; case '*': parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_MULTIPLY, XC_LEX_OP_MULTIPLY); break; case '+': c2 = *p->lex_inbuf; if (c2 == '+') { p->lex_inbuf++; p->lex = BC_LEX_OP_INC; } else parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_PLUS, XC_LEX_OP_PLUS); break; case ',': p->lex = BC_LEX_COMMA; break; case '-': c2 = *p->lex_inbuf; if (c2 == '-') { p->lex_inbuf++; p->lex = BC_LEX_OP_DEC; } else parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_MINUS, XC_LEX_OP_MINUS); break; case '.': if (isdigit(*p->lex_inbuf)) s = zxc_lex_number(c); else { p->lex = BC_LEX_KEY_LAST; s = zbc_POSIX_does_not_allow("'.' as 'last'"); } break; case '/': c2 = *p->lex_inbuf; if (c2 == '*') s = zbc_lex_comment(); else parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_DIVIDE, XC_LEX_OP_DIVIDE); break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U': case 'V': case 'W': case 'X': case 'Y': case 'Z': s = zxc_lex_number(c); break; case ';': p->lex = BC_LEX_SCOLON; break; case '<': parse_lex_by_checking_eq_sign(XC_LEX_OP_REL_LE, XC_LEX_OP_REL_LT); break; case '=': parse_lex_by_checking_eq_sign(XC_LEX_OP_REL_EQ, BC_LEX_OP_ASSIGN); break; case '>': parse_lex_by_checking_eq_sign(XC_LEX_OP_REL_GE, XC_LEX_OP_REL_GT); break; case '[': case ']': p->lex = (BcLexType)(c - '[' + BC_LEX_LBRACKET); break; case '\\': if (*p->lex_inbuf == '\n') { p->lex = XC_LEX_WHITESPACE; p->lex_inbuf++; } else s = bc_error_bad_character(c); break; case '^': parse_lex_by_checking_eq_sign(BC_LEX_OP_ASSIGN_POWER, XC_LEX_OP_POWER); break; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u': case 'v': case 'w': case 'x': case 'y': case 'z': s = zbc_lex_identifier(); break; case '{': case '}': p->lex = (BcLexType)(c - '{' + BC_LEX_LBRACE); break; case '|': c2 = *p->lex_inbuf; if (c2 == '|') { s = zbc_POSIX_does_not_allow_bool_ops_this_is_bad("||"); if (s) RETURN_STATUS(s); p->lex_inbuf++; p->lex = BC_LEX_OP_BOOL_OR; } else { p->lex = XC_LEX_INVALID; s = bc_error_bad_character(c); } break; default: p->lex = XC_LEX_INVALID; s = bc_error_bad_character(c); break; } RETURN_STATUS(s); } #define zbc_lex_token(...) (zbc_lex_token(__VA_ARGS__) COMMA_SUCCESS) #endif // ENABLE_BC #if ENABLE_DC static BC_STATUS zdc_lex_register(void) { BcParse *p = &G.prs; if (G_exreg && isspace(*p->lex_inbuf)) { xc_lex_whitespace(); // eats whitespace (but not newline) p->lex_inbuf++; // xc_lex_name() expects this xc_lex_name(); } else { bc_vec_pop_all(&p->lex_strnumbuf); bc_vec_push(&p->lex_strnumbuf, p->lex_inbuf++); bc_vec_pushZeroByte(&p->lex_strnumbuf); p->lex = XC_LEX_NAME; } RETURN_STATUS(BC_STATUS_SUCCESS); } #define zdc_lex_register(...) (zdc_lex_register(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zdc_lex_string(void) { BcParse *p = &G.prs; size_t depth; p->lex = XC_LEX_STR; bc_vec_pop_all(&p->lex_strnumbuf); depth = 1; for (;;) { char c = peek_inbuf(); if (c == '\0') { RETURN_STATUS(bc_error("unterminated string")); } if (c == '[') depth++; if (c == ']') if (--depth == 0) break; if (c == '\n') { p->lex_line++; dbg_lex("++p->lex_line=%zd", p->lex_line); } bc_vec_push(&p->lex_strnumbuf, p->lex_inbuf); p->lex_inbuf++; } bc_vec_pushZeroByte(&p->lex_strnumbuf); p->lex_inbuf++; // skip trailing ']' G.err_line = p->lex_line; RETURN_STATUS(BC_STATUS_SUCCESS); } #define zdc_lex_string(...) (zdc_lex_string(__VA_ARGS__) COMMA_SUCCESS) #undef zdc_lex_token static BC_STATUS zdc_lex_token(void) { static const //BcLexType - should be this type, but narrower type saves size: uint8_t dc_lex_regs[] ALIGN1 = { XC_LEX_OP_REL_EQ, XC_LEX_OP_REL_LE, XC_LEX_OP_REL_GE, XC_LEX_OP_REL_NE, XC_LEX_OP_REL_LT, XC_LEX_OP_REL_GT, DC_LEX_SCOLON, DC_LEX_COLON, DC_LEX_ELSE, DC_LEX_LOAD, DC_LEX_LOAD_POP, DC_LEX_OP_ASSIGN, DC_LEX_STORE_PUSH, }; BcParse *p = &G.prs; BcStatus s; char c, c2; size_t i; for (i = 0; i < ARRAY_SIZE(dc_lex_regs); ++i) { if (p->lex_last == dc_lex_regs[i]) RETURN_STATUS(zdc_lex_register()); } s = BC_STATUS_SUCCESS; c = eat_inbuf(); if (c >= '%' && c <= '~' && (p->lex = dc_char_to_LEX[c - '%']) != XC_LEX_INVALID ) { RETURN_STATUS(s); } // This is the workhorse of the lexer. switch (c) { // case '\0': // probably never reached // p->lex = XC_LEX_EOF; // break; case '\n': // '\n' is XC_LEX_NLINE, not XC_LEX_WHITESPACE // (and "case '\n':" is not just empty here) // only to allow interactive dc have a way to exit // "parse" stage of "parse,execute" loop // on , not on _next_ token (which would mean // commands are not executed on pressing ). // IOW: typing "1p" should print "1" _at once_, // not after some more input. p->lex_line++; dbg_lex("++p->lex_line=%zd", p->lex_line); p->lex = XC_LEX_NLINE; break; case '\t': case '\v': case '\f': case '\r': case ' ': xc_lex_whitespace(); break; case '!': c2 = *p->lex_inbuf; if (c2 == '=') p->lex = XC_LEX_OP_REL_NE; else if (c2 == '<') p->lex = XC_LEX_OP_REL_LE; else if (c2 == '>') p->lex = XC_LEX_OP_REL_GE; else RETURN_STATUS(bc_error_bad_character(c)); p->lex_inbuf++; break; case '#': xc_lex_lineComment(); break; case '.': if (isdigit(*p->lex_inbuf)) s = zxc_lex_number(c); else s = bc_error_bad_character(c); break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': s = zxc_lex_number(c); break; case '[': s = zdc_lex_string(); break; default: p->lex = XC_LEX_INVALID; s = bc_error_bad_character(c); break; } RETURN_STATUS(s); } #define zdc_lex_token(...) (zdc_lex_token(__VA_ARGS__) COMMA_SUCCESS) #endif // ENABLE_DC static void xc_parse_push(unsigned i) { BcVec *code = &G.prs.func->code; dbg_compile("%s:%d pushing bytecode %zd:%d", __func__, __LINE__, code->len, i); bc_vec_pushByte(code, (uint8_t)i); } static void xc_parse_pushName(char *name) { #if 1 BcVec *code = &G.prs.func->code; size_t pos = code->len; size_t len = strlen(name) + 1; bc_vec_expand(code, pos + len); strcpy(code->v + pos, name); code->len = pos + len; #else // Smaller code, but way slow: do { xc_parse_push(*name); } while (*name++); #endif } // Indexes < 0xfc are encoded verbatim, else first byte is // 0xfc, 0xfd, 0xfe or 0xff, encoding "1..4 bytes", // followed by that many bytes, lsb first. // (The above describes 32-bit case). #define SMALL_INDEX_LIMIT (0x100 - sizeof(size_t)) static void bc_vec_pushIndex(BcVec *v, size_t idx) { size_t mask; unsigned amt; dbg_lex("%s:%d pushing index %zd", __func__, __LINE__, idx); if (idx < SMALL_INDEX_LIMIT) { bc_vec_pushByte(v, idx); return; } mask = ((size_t)0xff) << (sizeof(idx) * 8 - 8); amt = sizeof(idx); for (;;) { if (idx & mask) break; mask >>= 8; amt--; } // amt is at least 1 here - "one byte of length data follows" bc_vec_pushByte(v, (SMALL_INDEX_LIMIT - 1) + amt); do { bc_vec_pushByte(v, (unsigned char)idx); idx >>= 8; } while (idx != 0); } static void xc_parse_pushIndex(size_t idx) { bc_vec_pushIndex(&G.prs.func->code, idx); } static void xc_parse_pushInst_and_Index(unsigned inst, size_t idx) { xc_parse_push(inst); xc_parse_pushIndex(idx); } #if ENABLE_BC static void bc_parse_pushJUMP(size_t idx) { xc_parse_pushInst_and_Index(BC_INST_JUMP, idx); } static void bc_parse_pushJUMP_ZERO(size_t idx) { xc_parse_pushInst_and_Index(BC_INST_JUMP_ZERO, idx); } static BC_STATUS zbc_parse_pushSTR(void) { BcParse *p = &G.prs; char *str = xstrdup(p->lex_strnumbuf.v); xc_parse_pushInst_and_Index(XC_INST_STR, p->func->strs.len); bc_vec_push(&p->func->strs, &str); RETURN_STATUS(zxc_lex_next()); } #define zbc_parse_pushSTR(...) (zbc_parse_pushSTR(__VA_ARGS__) COMMA_SUCCESS) #endif static void xc_parse_pushNUM(void) { BcParse *p = &G.prs; char *num = xstrdup(p->lex_strnumbuf.v); #if ENABLE_BC && ENABLE_DC size_t idx = bc_vec_push(IS_BC ? &p->func->consts : &G.prog.consts, &num); #elif ENABLE_BC size_t idx = bc_vec_push(&p->func->consts, &num); #else // DC size_t idx = bc_vec_push(&G.prog.consts, &num); #endif xc_parse_pushInst_and_Index(XC_INST_NUM, idx); } static BC_STATUS zxc_parse_text_init(const char *text) { G.prs.func = xc_program_func(G.prs.fidx); G.prs.lex_inbuf = text; G.prs.lex = G.prs.lex_last = XC_LEX_INVALID; RETURN_STATUS(zxc_lex_next()); } #define zxc_parse_text_init(...) (zxc_parse_text_init(__VA_ARGS__) COMMA_SUCCESS) // Called when parsing or execution detects a failure, // resets execution structures. static void xc_program_reset(void) { BcFunc *f; BcInstPtr *ip; bc_vec_npop(&G.prog.exestack, G.prog.exestack.len - 1); bc_vec_pop_all(&G.prog.results); f = xc_program_func_BC_PROG_MAIN(); ip = bc_vec_top(&G.prog.exestack); ip->inst_idx = f->code.len; } // Called when parsing code detects a failure, // resets parsing structures. static void xc_parse_reset(void) { BcParse *p = &G.prs; if (p->fidx != BC_PROG_MAIN) { bc_func_free(p->func); bc_func_init(p->func); p->fidx = BC_PROG_MAIN; p->func = xc_program_func_BC_PROG_MAIN(); } p->lex_inbuf += strlen(p->lex_inbuf); p->lex = XC_LEX_EOF; IF_BC(bc_vec_pop_all(&p->exits);) IF_BC(bc_vec_pop_all(&p->conds);) IF_BC(bc_vec_pop_all(&p->ops);) xc_program_reset(); } static void xc_parse_free(void) { IF_BC(bc_vec_free(&G.prs.exits);) IF_BC(bc_vec_free(&G.prs.conds);) IF_BC(bc_vec_free(&G.prs.ops);) bc_vec_free(&G.prs.lex_strnumbuf); } static void xc_parse_create(size_t fidx) { BcParse *p = &G.prs; memset(p, 0, sizeof(BcParse)); bc_char_vec_init(&p->lex_strnumbuf); IF_BC(bc_vec_init(&p->exits, sizeof(size_t), NULL);) IF_BC(bc_vec_init(&p->conds, sizeof(size_t), NULL);) IF_BC(bc_vec_init(&p->ops, sizeof(BcLexType), NULL);) p->fidx = fidx; p->func = xc_program_func(fidx); } static void xc_program_add_fn(void) { //size_t idx; BcFunc f; bc_func_init(&f); //idx = bc_vec_push(&G.prog.fns, &f); //return idx; } #if ENABLE_BC // Note: takes ownership of 'name' (must be malloced) static size_t bc_program_addFunc(char *name) { size_t idx; BcId entry, *entry_ptr; int inserted; entry.name = name; entry.idx = G.prog.fns.len; inserted = bc_map_insert(&G.prog.fn_map, &entry, &idx); if (!inserted) free(name); entry_ptr = bc_vec_item(&G.prog.fn_map, idx); idx = entry_ptr->idx; if (!inserted) { // There is already a function with this name. // It'll be redefined now, clear old definition. BcFunc *func = xc_program_func(entry_ptr->idx); bc_func_free(func); bc_func_init(func); } else { xc_program_add_fn(); } return idx; } #define BC_PARSE_TOP_OP(p) (*(BcLexType*)bc_vec_top(&(p)->ops)) // We can calculate the conversion between tokens and exprs by subtracting the // position of the first operator in the lex enum and adding the position of the // first in the expr enum. Note: This only works for binary operators. #define BC_TOKEN_2_INST(t) ((char) ((t) - XC_LEX_OP_POWER + XC_INST_POWER)) static BC_STATUS zbc_parse_expr(uint8_t flags); #define zbc_parse_expr(...) (zbc_parse_expr(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_stmt_possibly_auto(bool auto_allowed); #define zbc_parse_stmt_possibly_auto(...) (zbc_parse_stmt_possibly_auto(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_stmt(void) { RETURN_STATUS(zbc_parse_stmt_possibly_auto(false)); } #define zbc_parse_stmt(...) (zbc_parse_stmt(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_stmt_allow_NLINE_before(const char *after_X) { BcParse *p = &G.prs; // "if(cond)stmt" is accepted too, but not 2+ newlines. // Same for "else", "while()", "for()". BcStatus s = zbc_lex_next_and_skip_NLINE(); if (s) RETURN_STATUS(s); if (p->lex == XC_LEX_NLINE) RETURN_STATUS(bc_error_fmt("no statement after '%s'", after_X)); RETURN_STATUS(zbc_parse_stmt()); } #define zbc_parse_stmt_allow_NLINE_before(...) (zbc_parse_stmt_allow_NLINE_before(__VA_ARGS__) COMMA_SUCCESS) static void bc_parse_operator(BcLexType type, size_t start, size_t *nexprs) { BcParse *p = &G.prs; char l, r = bc_operation_PREC(type - XC_LEX_1st_op); bool left = bc_operation_LEFT(type - XC_LEX_1st_op); while (p->ops.len > start) { BcLexType t = BC_PARSE_TOP_OP(p); if (t == BC_LEX_LPAREN) break; l = bc_operation_PREC(t - XC_LEX_1st_op); if (l >= r && (l != r || !left)) break; xc_parse_push(BC_TOKEN_2_INST(t)); bc_vec_pop(&p->ops); *nexprs -= (t != BC_LEX_OP_BOOL_NOT && t != XC_LEX_NEG); } bc_vec_push(&p->ops, &type); } static BC_STATUS zbc_parse_rightParen(size_t ops_bgn, size_t *nexs) { BcParse *p = &G.prs; BcLexType top; if (p->ops.len <= ops_bgn) RETURN_STATUS(bc_error_bad_expression()); top = BC_PARSE_TOP_OP(p); while (top != BC_LEX_LPAREN) { xc_parse_push(BC_TOKEN_2_INST(top)); bc_vec_pop(&p->ops); *nexs -= (top != BC_LEX_OP_BOOL_NOT && top != XC_LEX_NEG); if (p->ops.len <= ops_bgn) RETURN_STATUS(bc_error_bad_expression()); top = BC_PARSE_TOP_OP(p); } bc_vec_pop(&p->ops); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_parse_rightParen(...) (zbc_parse_rightParen(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_params(uint8_t flags) { BcParse *p = &G.prs; BcStatus s; size_t nparams; dbg_lex("%s:%d p->lex:%d", __func__, __LINE__, p->lex); flags = (flags & ~(BC_PARSE_PRINT | BC_PARSE_REL)) | BC_PARSE_ARRAY; s = zxc_lex_next(); if (s) RETURN_STATUS(s); nparams = 0; if (p->lex != BC_LEX_RPAREN) { for (;;) { s = zbc_parse_expr(flags); if (s) RETURN_STATUS(s); nparams++; if (p->lex != BC_LEX_COMMA) { if (p->lex == BC_LEX_RPAREN) break; RETURN_STATUS(bc_error_bad_token()); } s = zxc_lex_next(); if (s) RETURN_STATUS(s); } } xc_parse_pushInst_and_Index(BC_INST_CALL, nparams); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_parse_params(...) (zbc_parse_params(__VA_ARGS__) COMMA_SUCCESS) // Note: takes ownership of 'name' (must be malloced) static BC_STATUS zbc_parse_call(char *name, uint8_t flags) { BcParse *p = &G.prs; BcStatus s; BcId entry, *entry_ptr; size_t idx; entry.name = name; s = zbc_parse_params(flags); if (s) goto err; if (p->lex != BC_LEX_RPAREN) { s = bc_error_bad_token(); goto err; } idx = bc_map_find_exact(&G.prog.fn_map, &entry); if (idx == BC_VEC_INVALID_IDX) { // No such function exists, create an empty one bc_program_addFunc(name); idx = bc_map_find_exact(&G.prog.fn_map, &entry); } else free(name); entry_ptr = bc_vec_item(&G.prog.fn_map, idx); xc_parse_pushIndex(entry_ptr->idx); RETURN_STATUS(zxc_lex_next()); err: free(name); RETURN_STATUS(s); } #define zbc_parse_call(...) (zbc_parse_call(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_name(BcInst *type, uint8_t flags) { BcParse *p = &G.prs; BcStatus s; char *name; name = xstrdup(p->lex_strnumbuf.v); s = zxc_lex_next(); if (s) goto err; if (p->lex == BC_LEX_LBRACKET) { s = zxc_lex_next(); if (s) goto err; if (p->lex == BC_LEX_RBRACKET) { if (!(flags & BC_PARSE_ARRAY)) { s = bc_error_bad_expression(); goto err; } *type = XC_INST_ARRAY; } else { *type = XC_INST_ARRAY_ELEM; flags &= ~(BC_PARSE_PRINT | BC_PARSE_REL); s = zbc_parse_expr(flags); if (s) goto err; } s = zxc_lex_next(); if (s) goto err; xc_parse_push(*type); xc_parse_pushName(name); free(name); } else if (p->lex == BC_LEX_LPAREN) { if (flags & BC_PARSE_NOCALL) { s = bc_error_bad_token(); goto err; } *type = BC_INST_CALL; s = zbc_parse_call(name, flags); } else { *type = XC_INST_VAR; xc_parse_push(XC_INST_VAR); xc_parse_pushName(name); free(name); } RETURN_STATUS(s); err: free(name); RETURN_STATUS(s); } #define zbc_parse_name(...) (zbc_parse_name(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_read(void) { BcParse *p = &G.prs; BcStatus s; s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token()); s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token()); xc_parse_push(XC_INST_READ); RETURN_STATUS(s); } #define zbc_parse_read(...) (zbc_parse_read(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_builtin(BcLexType type, uint8_t flags, BcInst *prev) { BcParse *p = &G.prs; BcStatus s; s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token()); flags = (flags & ~(BC_PARSE_PRINT | BC_PARSE_REL)) | BC_PARSE_ARRAY; s = zxc_lex_next(); if (s) RETURN_STATUS(s); s = zbc_parse_expr(flags); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token()); *prev = (type == BC_LEX_KEY_LENGTH) ? XC_INST_LENGTH : XC_INST_SQRT; xc_parse_push(*prev); RETURN_STATUS(s); } #define zbc_parse_builtin(...) (zbc_parse_builtin(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_scale(BcInst *type, uint8_t flags) { BcParse *p = &G.prs; BcStatus s; s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_LPAREN) { *type = XC_INST_SCALE; xc_parse_push(XC_INST_SCALE); RETURN_STATUS(BC_STATUS_SUCCESS); } *type = XC_INST_SCALE_FUNC; flags &= ~(BC_PARSE_PRINT | BC_PARSE_REL); s = zxc_lex_next(); if (s) RETURN_STATUS(s); s = zbc_parse_expr(flags); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token()); xc_parse_push(XC_INST_SCALE_FUNC); RETURN_STATUS(zxc_lex_next()); } #define zbc_parse_scale(...) (zbc_parse_scale(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_incdec(BcInst *prev, size_t *nexs, uint8_t flags) { BcParse *p = &G.prs; BcStatus s; BcLexType type; char inst; BcInst etype = *prev; if (etype == XC_INST_VAR || etype == XC_INST_ARRAY_ELEM || etype == XC_INST_SCALE || etype == BC_INST_LAST || etype == XC_INST_IBASE || etype == XC_INST_OBASE ) { *prev = inst = BC_INST_INC_POST + (p->lex != BC_LEX_OP_INC); xc_parse_push(inst); s = zxc_lex_next(); } else { *prev = inst = BC_INST_INC_PRE + (p->lex != BC_LEX_OP_INC); s = zxc_lex_next(); if (s) RETURN_STATUS(s); type = p->lex; // Because we parse the next part of the expression // right here, we need to increment this. *nexs = *nexs + 1; switch (type) { case XC_LEX_NAME: s = zbc_parse_name(prev, flags | BC_PARSE_NOCALL); break; case BC_LEX_KEY_IBASE: case BC_LEX_KEY_LAST: case BC_LEX_KEY_OBASE: xc_parse_push(type - BC_LEX_KEY_IBASE + XC_INST_IBASE); s = zxc_lex_next(); break; case BC_LEX_KEY_SCALE: s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex == BC_LEX_LPAREN) s = bc_error_bad_token(); else xc_parse_push(XC_INST_SCALE); break; default: s = bc_error_bad_token(); break; } if (!s) xc_parse_push(inst); } RETURN_STATUS(s); } #define zbc_parse_incdec(...) (zbc_parse_incdec(__VA_ARGS__) COMMA_SUCCESS) static int bc_parse_inst_isLeaf(BcInst p) { return (p >= XC_INST_NUM && p <= XC_INST_SQRT) || p == BC_INST_INC_POST || p == BC_INST_DEC_POST ; } #define BC_PARSE_LEAF(prev, bin_last, rparen) \ (!(bin_last) && ((rparen) || bc_parse_inst_isLeaf(prev))) static BC_STATUS zbc_parse_minus(BcInst *prev, size_t ops_bgn, bool rparen, bool bin_last, size_t *nexprs) { BcParse *p = &G.prs; BcStatus s; BcLexType type; s = zxc_lex_next(); if (s) RETURN_STATUS(s); type = BC_PARSE_LEAF(*prev, bin_last, rparen) ? XC_LEX_OP_MINUS : XC_LEX_NEG; *prev = BC_TOKEN_2_INST(type); // We can just push onto the op stack because this is the largest // precedence operator that gets pushed. Inc/dec does not. if (type != XC_LEX_OP_MINUS) bc_vec_push(&p->ops, &type); else bc_parse_operator(type, ops_bgn, nexprs); RETURN_STATUS(s); } #define zbc_parse_minus(...) (zbc_parse_minus(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_print(void) { BcParse *p = &G.prs; BcStatus s; BcLexType type; for (;;) { s = zxc_lex_next(); if (s) RETURN_STATUS(s); type = p->lex; if (type == XC_LEX_STR) { s = zbc_parse_pushSTR(); } else { s = zbc_parse_expr(0); } if (s) RETURN_STATUS(s); xc_parse_push(XC_INST_PRINT_POP); if (p->lex != BC_LEX_COMMA) break; } RETURN_STATUS(s); } #define zbc_parse_print(...) (zbc_parse_print(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_return(void) { BcParse *p = &G.prs; BcStatus s; BcLexType t; dbg_lex_enter("%s:%d entered", __func__, __LINE__); s = zxc_lex_next(); if (s) RETURN_STATUS(s); t = p->lex; if (t == XC_LEX_NLINE || t == BC_LEX_SCOLON || t == BC_LEX_RBRACE) xc_parse_push(BC_INST_RET0); else { //TODO: if (p->func->voidfunc) ERROR s = zbc_parse_expr(0); if (s) RETURN_STATUS(s); if (t != BC_LEX_LPAREN // "return EXPR", no () || p->lex_last != BC_LEX_RPAREN // example: "return (a) + b" ) { s = zbc_POSIX_requires("parentheses around return expressions"); if (s) RETURN_STATUS(s); } xc_parse_push(XC_INST_RET); } dbg_lex_done("%s:%d done", __func__, __LINE__); RETURN_STATUS(s); } #define zbc_parse_return(...) (zbc_parse_return(__VA_ARGS__) COMMA_SUCCESS) static void rewrite_label_to_current(size_t idx) { BcParse *p = &G.prs; size_t *label = bc_vec_item(&p->func->labels, idx); *label = p->func->code.len; } static BC_STATUS zbc_parse_if(void) { BcParse *p = &G.prs; BcStatus s; size_t ip_idx; dbg_lex_enter("%s:%d entered", __func__, __LINE__); s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token()); s = zxc_lex_next(); if (s) RETURN_STATUS(s); s = zbc_parse_expr(BC_PARSE_REL); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token()); // Encode "if zero, jump to ..." // Pushed value (destination of the jump) is uninitialized, // will be rewritten to be address of "end of if()" or of "else". ip_idx = bc_vec_push(&p->func->labels, &ip_idx); bc_parse_pushJUMP_ZERO(ip_idx); s = zbc_parse_stmt_allow_NLINE_before(STRING_if); if (s) RETURN_STATUS(s); dbg_lex("%s:%d in if after stmt: p->lex:%d", __func__, __LINE__, p->lex); if (p->lex == BC_LEX_KEY_ELSE) { size_t ip2_idx; // Encode "after then_stmt, jump to end of if()" ip2_idx = bc_vec_push(&p->func->labels, &ip2_idx); dbg_lex("%s:%d after if() then_stmt: BC_INST_JUMP to %zd", __func__, __LINE__, ip2_idx); bc_parse_pushJUMP(ip2_idx); dbg_lex("%s:%d rewriting 'if_zero' label to jump to 'else'-> %zd", __func__, __LINE__, p->func->code.len); rewrite_label_to_current(ip_idx); ip_idx = ip2_idx; s = zbc_parse_stmt_allow_NLINE_before(STRING_else); if (s) RETURN_STATUS(s); } dbg_lex("%s:%d rewriting label to jump after 'if' body-> %zd", __func__, __LINE__, p->func->code.len); rewrite_label_to_current(ip_idx); dbg_lex_done("%s:%d done", __func__, __LINE__); RETURN_STATUS(s); } #define zbc_parse_if(...) (zbc_parse_if(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_while(void) { BcParse *p = &G.prs; BcStatus s; size_t cond_idx; size_t ip_idx; s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token()); s = zxc_lex_next(); if (s) RETURN_STATUS(s); cond_idx = bc_vec_push(&p->func->labels, &p->func->code.len); ip_idx = cond_idx + 1; bc_vec_push(&p->conds, &cond_idx); bc_vec_push(&p->exits, &ip_idx); bc_vec_push(&p->func->labels, &ip_idx); s = zbc_parse_expr(BC_PARSE_REL); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token()); bc_parse_pushJUMP_ZERO(ip_idx); s = zbc_parse_stmt_allow_NLINE_before(STRING_while); if (s) RETURN_STATUS(s); dbg_lex("%s:%d BC_INST_JUMP to %zd", __func__, __LINE__, cond_idx); bc_parse_pushJUMP(cond_idx); dbg_lex("%s:%d rewriting label-> %zd", __func__, __LINE__, p->func->code.len); rewrite_label_to_current(ip_idx); bc_vec_pop(&p->exits); bc_vec_pop(&p->conds); RETURN_STATUS(s); } #define zbc_parse_while(...) (zbc_parse_while(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_for(void) { BcParse *p = &G.prs; BcStatus s; size_t cond_idx, exit_idx, body_idx, update_idx; dbg_lex("%s:%d p->lex:%d", __func__, __LINE__, p->lex); s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_token()); s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_SCOLON) { s = zbc_parse_expr(0); xc_parse_push(XC_INST_POP); if (s) RETURN_STATUS(s); } else { s = zbc_POSIX_does_not_allow_empty_X_expression_in_for("init"); if (s) RETURN_STATUS(s); } if (p->lex != BC_LEX_SCOLON) RETURN_STATUS(bc_error_bad_token()); s = zxc_lex_next(); if (s) RETURN_STATUS(s); cond_idx = bc_vec_push(&p->func->labels, &p->func->code.len); update_idx = cond_idx + 1; body_idx = update_idx + 1; exit_idx = body_idx + 1; if (p->lex != BC_LEX_SCOLON) s = zbc_parse_expr(BC_PARSE_REL); else { // Set this for the next call to xc_parse_pushNUM(). // This is safe to set because the current token is a semicolon, // which has no string requirement. bc_vec_string(&p->lex_strnumbuf, 1, "1"); xc_parse_pushNUM(); s = zbc_POSIX_does_not_allow_empty_X_expression_in_for("condition"); } if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_SCOLON) RETURN_STATUS(bc_error_bad_token()); s = zxc_lex_next(); if (s) RETURN_STATUS(s); bc_parse_pushJUMP_ZERO(exit_idx); bc_parse_pushJUMP(body_idx); bc_vec_push(&p->conds, &update_idx); bc_vec_push(&p->func->labels, &p->func->code.len); if (p->lex != BC_LEX_RPAREN) { s = zbc_parse_expr(0); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_token()); xc_parse_push(XC_INST_POP); } else { s = zbc_POSIX_does_not_allow_empty_X_expression_in_for("update"); if (s) RETURN_STATUS(s); } bc_parse_pushJUMP(cond_idx); bc_vec_push(&p->func->labels, &p->func->code.len); bc_vec_push(&p->exits, &exit_idx); bc_vec_push(&p->func->labels, &exit_idx); s = zbc_parse_stmt_allow_NLINE_before(STRING_for); if (s) RETURN_STATUS(s); dbg_lex("%s:%d BC_INST_JUMP to %zd", __func__, __LINE__, update_idx); bc_parse_pushJUMP(update_idx); dbg_lex("%s:%d rewriting label-> %zd", __func__, __LINE__, p->func->code.len); rewrite_label_to_current(exit_idx); bc_vec_pop(&p->exits); bc_vec_pop(&p->conds); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_parse_for(...) (zbc_parse_for(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_break_or_continue(BcLexType type) { BcParse *p = &G.prs; size_t i; if (type == BC_LEX_KEY_BREAK) { if (p->exits.len == 0) // none of the enclosing blocks is a loop RETURN_STATUS(bc_error_bad_token()); i = *(size_t*)bc_vec_top(&p->exits); } else { i = *(size_t*)bc_vec_top(&p->conds); } bc_parse_pushJUMP(i); RETURN_STATUS(zxc_lex_next()); } #define zbc_parse_break_or_continue(...) (zbc_parse_break_or_continue(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_func_insert(BcFunc *f, char *name, BcType type) { BcId *autoid; BcId a; size_t i; autoid = (void*)f->autos.v; for (i = 0; i < f->autos.len; i++, autoid++) { if (strcmp(name, autoid->name) == 0 && type == (BcType) autoid->idx ) { RETURN_STATUS(bc_error("duplicate function parameter or auto name")); } } a.idx = type; a.name = name; bc_vec_push(&f->autos, &a); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_func_insert(...) (zbc_func_insert(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_funcdef(void) { BcParse *p = &G.prs; BcStatus s; bool comma, voidfunc; char *name; dbg_lex_enter("%s:%d entered", __func__, __LINE__); s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != XC_LEX_NAME) RETURN_STATUS(bc_error_bad_function_definition()); // To be maximally both POSIX and GNU-compatible, // "void" is not treated as a normal keyword: // you can have variable named "void", and even a function // named "void": "define void() { return 6; }" is ok. // _Only_ "define void f() ..." syntax treats "void" // specially. voidfunc = (strcmp(p->lex_strnumbuf.v, "void") == 0); s = zxc_lex_next(); if (s) RETURN_STATUS(s); voidfunc = (voidfunc && p->lex == XC_LEX_NAME); if (voidfunc) { s = zxc_lex_next(); if (s) RETURN_STATUS(s); } if (p->lex != BC_LEX_LPAREN) RETURN_STATUS(bc_error_bad_function_definition()); p->fidx = bc_program_addFunc(xstrdup(p->lex_strnumbuf.v)); p->func = xc_program_func(p->fidx); p->func->voidfunc = voidfunc; s = zxc_lex_next(); if (s) RETURN_STATUS(s); comma = false; while (p->lex != BC_LEX_RPAREN) { BcType t = BC_TYPE_VAR; if (p->lex == XC_LEX_OP_MULTIPLY) { t = BC_TYPE_REF; s = zxc_lex_next(); if (s) RETURN_STATUS(s); s = zbc_POSIX_does_not_allow("references"); if (s) RETURN_STATUS(s); } if (p->lex != XC_LEX_NAME) RETURN_STATUS(bc_error_bad_function_definition()); ++p->func->nparams; name = xstrdup(p->lex_strnumbuf.v); s = zxc_lex_next(); if (s) goto err; if (p->lex == BC_LEX_LBRACKET) { if (t == BC_TYPE_VAR) t = BC_TYPE_ARRAY; s = zxc_lex_next(); if (s) goto err; if (p->lex != BC_LEX_RBRACKET) { s = bc_error_bad_function_definition(); goto err; } s = zxc_lex_next(); if (s) goto err; } else if (t == BC_TYPE_REF) { s = bc_error_at("vars can't be references"); goto err; } comma = p->lex == BC_LEX_COMMA; if (comma) { s = zxc_lex_next(); if (s) goto err; } s = zbc_func_insert(p->func, name, t); if (s) goto err; } if (comma) RETURN_STATUS(bc_error_bad_function_definition()); s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != BC_LEX_LBRACE) { s = zbc_POSIX_requires("the left brace be on the same line as the function header"); if (s) RETURN_STATUS(s); } // Prevent "define z()" from being interpreted as function with empty stmt as body s = zbc_lex_skip_if_at_NLINE(); if (s) RETURN_STATUS(s); // GNU bc requires a {} block even if function body has single stmt, enforce this if (p->lex != BC_LEX_LBRACE) RETURN_STATUS(bc_error("function { body } expected")); p->in_funcdef++; // to determine whether "return" stmt is allowed, and such s = zbc_parse_stmt_possibly_auto(true); p->in_funcdef--; if (s) RETURN_STATUS(s); xc_parse_push(BC_INST_RET0); // Subsequent code generation is into main program p->fidx = BC_PROG_MAIN; p->func = xc_program_func_BC_PROG_MAIN(); dbg_lex_done("%s:%d done", __func__, __LINE__); RETURN_STATUS(s); err: dbg_lex_done("%s:%d done (error)", __func__, __LINE__); free(name); RETURN_STATUS(s); } #define zbc_parse_funcdef(...) (zbc_parse_funcdef(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_auto(void) { BcParse *p = &G.prs; BcStatus s; char *name; dbg_lex_enter("%s:%d entered", __func__, __LINE__); s = zxc_lex_next(); if (s) RETURN_STATUS(s); for (;;) { BcType t; if (p->lex != XC_LEX_NAME) RETURN_STATUS(bc_error_at("bad 'auto' syntax")); name = xstrdup(p->lex_strnumbuf.v); s = zxc_lex_next(); if (s) goto err; t = BC_TYPE_VAR; if (p->lex == BC_LEX_LBRACKET) { t = BC_TYPE_ARRAY; s = zxc_lex_next(); if (s) goto err; if (p->lex != BC_LEX_RBRACKET) { s = bc_error_at("bad 'auto' syntax"); goto err; } s = zxc_lex_next(); if (s) goto err; } s = zbc_func_insert(p->func, name, t); if (s) goto err; if (p->lex == XC_LEX_NLINE || p->lex == BC_LEX_SCOLON //|| p->lex == BC_LEX_RBRACE // allow "define f() {auto a}" ) { break; } if (p->lex != BC_LEX_COMMA) RETURN_STATUS(bc_error_at("bad 'auto' syntax")); s = zxc_lex_next(); // skip comma if (s) RETURN_STATUS(s); } dbg_lex_done("%s:%d done", __func__, __LINE__); RETURN_STATUS(BC_STATUS_SUCCESS); err: free(name); dbg_lex_done("%s:%d done (ERROR)", __func__, __LINE__); RETURN_STATUS(s); } #define zbc_parse_auto(...) (zbc_parse_auto(__VA_ARGS__) COMMA_SUCCESS) #undef zbc_parse_stmt_possibly_auto static BC_STATUS zbc_parse_stmt_possibly_auto(bool auto_allowed) { BcParse *p = &G.prs; BcStatus s = BC_STATUS_SUCCESS; dbg_lex_enter("%s:%d entered, p->lex:%d", __func__, __LINE__, p->lex); if (p->lex == XC_LEX_NLINE) { dbg_lex_done("%s:%d done (seen XC_LEX_NLINE)", __func__, __LINE__); RETURN_STATUS(s); } if (p->lex == BC_LEX_SCOLON) { dbg_lex_done("%s:%d done (seen BC_LEX_SCOLON)", __func__, __LINE__); RETURN_STATUS(s); } if (p->lex == BC_LEX_LBRACE) { dbg_lex("%s:%d BC_LEX_LBRACE: (auto_allowed:%d)", __func__, __LINE__, auto_allowed); do { s = zxc_lex_next(); if (s) RETURN_STATUS(s); } while (p->lex == XC_LEX_NLINE); if (auto_allowed && p->lex == BC_LEX_KEY_AUTO) { dbg_lex("%s:%d calling zbc_parse_auto()", __func__, __LINE__); s = zbc_parse_auto(); if (s) RETURN_STATUS(s); } while (p->lex != BC_LEX_RBRACE) { dbg_lex("%s:%d block parsing loop", __func__, __LINE__); s = zbc_parse_stmt(); if (s) RETURN_STATUS(s); // Check that next token is a correct stmt delimiter - // disallows "print 1 print 2" and such. if (p->lex == BC_LEX_RBRACE) break; if (p->lex != BC_LEX_SCOLON && p->lex != XC_LEX_NLINE ) { RETURN_STATUS(bc_error_at("bad statement terminator")); } s = zxc_lex_next(); if (s) RETURN_STATUS(s); } s = zxc_lex_next(); dbg_lex_done("%s:%d done (seen BC_LEX_RBRACE)", __func__, __LINE__); RETURN_STATUS(s); } dbg_lex("%s:%d p->lex:%d", __func__, __LINE__, p->lex); switch (p->lex) { case XC_LEX_OP_MINUS: case BC_LEX_OP_INC: case BC_LEX_OP_DEC: case BC_LEX_OP_BOOL_NOT: case BC_LEX_LPAREN: case XC_LEX_NAME: case XC_LEX_NUMBER: case BC_LEX_KEY_IBASE: case BC_LEX_KEY_LAST: case BC_LEX_KEY_LENGTH: case BC_LEX_KEY_OBASE: case BC_LEX_KEY_READ: case BC_LEX_KEY_SCALE: case BC_LEX_KEY_SQRT: s = zbc_parse_expr(BC_PARSE_PRINT); break; case XC_LEX_STR: s = zbc_parse_pushSTR(); xc_parse_push(XC_INST_PRINT_STR); break; case BC_LEX_KEY_BREAK: case BC_LEX_KEY_CONTINUE: s = zbc_parse_break_or_continue(p->lex); break; case BC_LEX_KEY_FOR: s = zbc_parse_for(); break; case BC_LEX_KEY_HALT: xc_parse_push(BC_INST_HALT); s = zxc_lex_next(); break; case BC_LEX_KEY_IF: s = zbc_parse_if(); break; case BC_LEX_KEY_LIMITS: // "limits" is a compile-time command, // the output is produced at _parse time_. printf( "BC_BASE_MAX = "BC_MAX_OBASE_STR "\n" "BC_DIM_MAX = "BC_MAX_DIM_STR "\n" "BC_SCALE_MAX = "BC_MAX_SCALE_STR "\n" "BC_STRING_MAX = "BC_MAX_STRING_STR"\n" // "BC_NUM_MAX = "BC_MAX_NUM_STR "\n" - GNU bc does not show this "MAX Exponent = "BC_MAX_EXP_STR "\n" "Number of vars = "BC_MAX_VARS_STR "\n" ); s = zxc_lex_next(); break; case BC_LEX_KEY_PRINT: s = zbc_parse_print(); break; case BC_LEX_KEY_QUIT: // "quit" is a compile-time command. For example, // "if (0 == 1) quit" terminates when parsing the statement, // not when it is executed QUIT_OR_RETURN_TO_MAIN; case BC_LEX_KEY_RETURN: if (!p->in_funcdef) RETURN_STATUS(bc_error("'return' not in a function")); s = zbc_parse_return(); break; case BC_LEX_KEY_WHILE: s = zbc_parse_while(); break; default: s = bc_error_bad_token(); break; } dbg_lex_done("%s:%d done", __func__, __LINE__); RETURN_STATUS(s); } #define zbc_parse_stmt_possibly_auto(...) (zbc_parse_stmt_possibly_auto(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_parse_stmt_or_funcdef(void) { BcParse *p = &G.prs; BcStatus s; dbg_lex_enter("%s:%d entered", __func__, __LINE__); //why? // if (p->lex == XC_LEX_EOF) // s = bc_error("end of file"); // else if (p->lex == BC_LEX_KEY_DEFINE) { dbg_lex("%s:%d p->lex:BC_LEX_KEY_DEFINE", __func__, __LINE__); s = zbc_parse_funcdef(); } else { dbg_lex("%s:%d p->lex:%d (not BC_LEX_KEY_DEFINE)", __func__, __LINE__, p->lex); s = zbc_parse_stmt(); } dbg_lex_done("%s:%d done", __func__, __LINE__); RETURN_STATUS(s); } #define zbc_parse_stmt_or_funcdef(...) (zbc_parse_stmt_or_funcdef(__VA_ARGS__) COMMA_SUCCESS) #undef zbc_parse_expr static BC_STATUS zbc_parse_expr(uint8_t flags) { BcParse *p = &G.prs; BcInst prev = XC_INST_PRINT; size_t nexprs = 0, ops_bgn = p->ops.len; unsigned nparens, nrelops; bool paren_first, rprn, assign, bin_last, incdec; dbg_lex_enter("%s:%d entered", __func__, __LINE__); paren_first = (p->lex == BC_LEX_LPAREN); nparens = nrelops = 0; rprn = assign = incdec = false; bin_last = true; for (;;) { bool get_token; BcStatus s; BcLexType t = p->lex; if (!lex_allowed_in_bc_expr(t)) break; dbg_lex("%s:%d t:%d", __func__, __LINE__, t); get_token = false; s = BC_STATUS_SUCCESS; switch (t) { case BC_LEX_OP_INC: case BC_LEX_OP_DEC: dbg_lex("%s:%d LEX_OP_INC/DEC", __func__, __LINE__); if (incdec) RETURN_STATUS(bc_error_bad_assignment()); s = zbc_parse_incdec(&prev, &nexprs, flags); incdec = true; rprn = bin_last = false; //get_token = false; - already is break; case XC_LEX_OP_MINUS: dbg_lex("%s:%d LEX_OP_MINUS", __func__, __LINE__); s = zbc_parse_minus(&prev, ops_bgn, rprn, bin_last, &nexprs); rprn = false; //get_token = false; - already is bin_last = (prev == XC_INST_MINUS); if (bin_last) incdec = false; break; case BC_LEX_OP_ASSIGN_POWER: case BC_LEX_OP_ASSIGN_MULTIPLY: case BC_LEX_OP_ASSIGN_DIVIDE: case BC_LEX_OP_ASSIGN_MODULUS: case BC_LEX_OP_ASSIGN_PLUS: case BC_LEX_OP_ASSIGN_MINUS: case BC_LEX_OP_ASSIGN: dbg_lex("%s:%d LEX_ASSIGNxyz", __func__, __LINE__); if (prev != XC_INST_VAR && prev != XC_INST_ARRAY_ELEM && prev != XC_INST_SCALE && prev != XC_INST_IBASE && prev != XC_INST_OBASE && prev != BC_INST_LAST ) { RETURN_STATUS(bc_error_bad_assignment()); } // Fallthrough. case XC_LEX_OP_POWER: case XC_LEX_OP_MULTIPLY: case XC_LEX_OP_DIVIDE: case XC_LEX_OP_MODULUS: case XC_LEX_OP_PLUS: case XC_LEX_OP_REL_EQ: case XC_LEX_OP_REL_LE: case XC_LEX_OP_REL_GE: case XC_LEX_OP_REL_NE: case XC_LEX_OP_REL_LT: case XC_LEX_OP_REL_GT: case BC_LEX_OP_BOOL_NOT: case BC_LEX_OP_BOOL_OR: case BC_LEX_OP_BOOL_AND: dbg_lex("%s:%d LEX_OP_xyz", __func__, __LINE__); if (t == BC_LEX_OP_BOOL_NOT) { if (!bin_last && p->lex_last != BC_LEX_OP_BOOL_NOT) RETURN_STATUS(bc_error_bad_expression()); } else if (prev == XC_INST_BOOL_NOT) { RETURN_STATUS(bc_error_bad_expression()); } nrelops += (t >= XC_LEX_OP_REL_EQ && t <= XC_LEX_OP_REL_GT); prev = BC_TOKEN_2_INST(t); bc_parse_operator(t, ops_bgn, &nexprs); rprn = incdec = false; get_token = true; bin_last = (t != BC_LEX_OP_BOOL_NOT); break; case BC_LEX_LPAREN: dbg_lex("%s:%d LEX_LPAREN", __func__, __LINE__); if (BC_PARSE_LEAF(prev, bin_last, rprn)) RETURN_STATUS(bc_error_bad_expression()); bc_vec_push(&p->ops, &t); nparens++; get_token = true; rprn = incdec = false; break; case BC_LEX_RPAREN: dbg_lex("%s:%d LEX_RPAREN", __func__, __LINE__); //why? // if (p->lex_last == BC_LEX_LPAREN) { // RETURN_STATUS(bc_error_at("empty expression")); // } if (bin_last || prev == XC_INST_BOOL_NOT) RETURN_STATUS(bc_error_bad_expression()); if (nparens == 0) { goto exit_loop; } s = zbc_parse_rightParen(ops_bgn, &nexprs); nparens--; get_token = true; rprn = true; bin_last = incdec = false; break; case XC_LEX_NAME: dbg_lex("%s:%d LEX_NAME", __func__, __LINE__); if (BC_PARSE_LEAF(prev, bin_last, rprn)) RETURN_STATUS(bc_error_bad_expression()); s = zbc_parse_name(&prev, flags & ~BC_PARSE_NOCALL); rprn = (prev == BC_INST_CALL); bin_last = false; //get_token = false; - already is nexprs++; break; case XC_LEX_NUMBER: dbg_lex("%s:%d LEX_NUMBER", __func__, __LINE__); if (BC_PARSE_LEAF(prev, bin_last, rprn)) RETURN_STATUS(bc_error_bad_expression()); xc_parse_pushNUM(); prev = XC_INST_NUM; get_token = true; rprn = bin_last = false; nexprs++; break; case BC_LEX_KEY_IBASE: case BC_LEX_KEY_LAST: case BC_LEX_KEY_OBASE: dbg_lex("%s:%d LEX_IBASE/LAST/OBASE", __func__, __LINE__); if (BC_PARSE_LEAF(prev, bin_last, rprn)) RETURN_STATUS(bc_error_bad_expression()); prev = (char) (t - BC_LEX_KEY_IBASE + XC_INST_IBASE); xc_parse_push((char) prev); get_token = true; rprn = bin_last = false; nexprs++; break; case BC_LEX_KEY_LENGTH: case BC_LEX_KEY_SQRT: dbg_lex("%s:%d LEX_LEN/SQRT", __func__, __LINE__); if (BC_PARSE_LEAF(prev, bin_last, rprn)) RETURN_STATUS(bc_error_bad_expression()); s = zbc_parse_builtin(t, flags, &prev); get_token = true; rprn = bin_last = incdec = false; nexprs++; break; case BC_LEX_KEY_READ: dbg_lex("%s:%d LEX_READ", __func__, __LINE__); if (BC_PARSE_LEAF(prev, bin_last, rprn)) RETURN_STATUS(bc_error_bad_expression()); s = zbc_parse_read(); prev = XC_INST_READ; get_token = true; rprn = bin_last = incdec = false; nexprs++; break; case BC_LEX_KEY_SCALE: dbg_lex("%s:%d LEX_SCALE", __func__, __LINE__); if (BC_PARSE_LEAF(prev, bin_last, rprn)) RETURN_STATUS(bc_error_bad_expression()); s = zbc_parse_scale(&prev, flags); //get_token = false; - already is rprn = bin_last = false; nexprs++; break; default: RETURN_STATUS(bc_error_bad_token()); } if (s || G_interrupt) // error, or ^C: stop parsing RETURN_STATUS(BC_STATUS_FAILURE); if (get_token) { s = zxc_lex_next(); if (s) RETURN_STATUS(s); } } exit_loop: while (p->ops.len > ops_bgn) { BcLexType top = BC_PARSE_TOP_OP(p); assign = (top >= BC_LEX_OP_ASSIGN_POWER && top <= BC_LEX_OP_ASSIGN); if (top == BC_LEX_LPAREN || top == BC_LEX_RPAREN) RETURN_STATUS(bc_error_bad_expression()); xc_parse_push(BC_TOKEN_2_INST(top)); nexprs -= (top != BC_LEX_OP_BOOL_NOT && top != XC_LEX_NEG); bc_vec_pop(&p->ops); } if (prev == XC_INST_BOOL_NOT || nexprs != 1) RETURN_STATUS(bc_error_bad_expression()); if (!(flags & BC_PARSE_REL) && nrelops) { BcStatus s; s = zbc_POSIX_does_not_allow("comparison operators outside if or loops"); if (s) RETURN_STATUS(s); } else if ((flags & BC_PARSE_REL) && nrelops > 1) { BcStatus s; s = zbc_POSIX_requires("exactly one comparison operator per condition"); if (s) RETURN_STATUS(s); } if (flags & BC_PARSE_PRINT) { if (paren_first || !assign) xc_parse_push(XC_INST_PRINT); xc_parse_push(XC_INST_POP); } dbg_lex_done("%s:%d done", __func__, __LINE__); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_parse_expr(...) (zbc_parse_expr(__VA_ARGS__) COMMA_SUCCESS) #endif // ENABLE_BC #if ENABLE_DC static BC_STATUS zdc_parse_register(void) { BcParse *p = &G.prs; BcStatus s; s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (p->lex != XC_LEX_NAME) RETURN_STATUS(bc_error_bad_token()); xc_parse_pushName(p->lex_strnumbuf.v); RETURN_STATUS(s); } #define zdc_parse_register(...) (zdc_parse_register(__VA_ARGS__) COMMA_SUCCESS) static void dc_parse_string(void) { BcParse *p = &G.prs; char *str; size_t len = G.prog.strs.len; dbg_lex_enter("%s:%d entered", __func__, __LINE__); str = xstrdup(p->lex_strnumbuf.v); xc_parse_pushInst_and_Index(XC_INST_STR, len); bc_vec_push(&G.prog.strs, &str); // Add an empty function so that if zdc_program_execStr ever needs to // parse the string into code (from the 'x' command) there's somewhere // to store the bytecode. xc_program_add_fn(); p->func = xc_program_func(p->fidx); dbg_lex_done("%s:%d done", __func__, __LINE__); } static BC_STATUS zdc_parse_mem(uint8_t inst, bool name, bool store) { BcStatus s; xc_parse_push(inst); if (name) { s = zdc_parse_register(); if (s) RETURN_STATUS(s); } if (store) { xc_parse_push(DC_INST_SWAP); xc_parse_push(XC_INST_ASSIGN); xc_parse_push(XC_INST_POP); } RETURN_STATUS(BC_STATUS_SUCCESS); } #define zdc_parse_mem(...) (zdc_parse_mem(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zdc_parse_cond(uint8_t inst) { BcParse *p = &G.prs; BcStatus s; xc_parse_push(inst); xc_parse_push(DC_INST_EXEC_COND); s = zdc_parse_register(); if (s) RETURN_STATUS(s); s = zxc_lex_next(); if (s) RETURN_STATUS(s); // Note that 'else' part can not be on the next line: // echo -e '[1p]sa [2p]sb 2 1>a eb' | dc - OK, prints "2" // echo -e '[1p]sa [2p]sb 2 1>a\neb' | dc - parse error if (p->lex == DC_LEX_ELSE) { s = zdc_parse_register(); if (s) RETURN_STATUS(s); s = zxc_lex_next(); } else { xc_parse_push('\0'); } RETURN_STATUS(s); } #define zdc_parse_cond(...) (zdc_parse_cond(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zdc_parse_token(BcLexType t) { BcStatus s; uint8_t inst; bool assign, get_token; dbg_lex_enter("%s:%d entered", __func__, __LINE__); s = BC_STATUS_SUCCESS; get_token = true; switch (t) { case XC_LEX_OP_REL_EQ: case XC_LEX_OP_REL_LE: case XC_LEX_OP_REL_GE: case XC_LEX_OP_REL_NE: case XC_LEX_OP_REL_LT: case XC_LEX_OP_REL_GT: dbg_lex("%s:%d LEX_OP_REL_xyz", __func__, __LINE__); s = zdc_parse_cond(t - XC_LEX_OP_REL_EQ + XC_INST_REL_EQ); get_token = false; break; case DC_LEX_SCOLON: case DC_LEX_COLON: dbg_lex("%s:%d LEX_[S]COLON", __func__, __LINE__); s = zdc_parse_mem(XC_INST_ARRAY_ELEM, true, t == DC_LEX_COLON); break; case XC_LEX_STR: dbg_lex("%s:%d LEX_STR", __func__, __LINE__); dc_parse_string(); break; case XC_LEX_NEG: dbg_lex("%s:%d LEX_NEG", __func__, __LINE__); s = zxc_lex_next(); if (s) RETURN_STATUS(s); if (G.prs.lex != XC_LEX_NUMBER) RETURN_STATUS(bc_error_bad_token()); xc_parse_pushNUM(); xc_parse_push(XC_INST_NEG); break; case XC_LEX_NUMBER: dbg_lex("%s:%d LEX_NUMBER", __func__, __LINE__); xc_parse_pushNUM(); break; case DC_LEX_READ: dbg_lex("%s:%d LEX_KEY_READ", __func__, __LINE__); xc_parse_push(XC_INST_READ); break; case DC_LEX_OP_ASSIGN: case DC_LEX_STORE_PUSH: dbg_lex("%s:%d LEX_OP_ASSIGN/STORE_PUSH", __func__, __LINE__); assign = (t == DC_LEX_OP_ASSIGN); inst = assign ? XC_INST_VAR : DC_INST_PUSH_TO_VAR; s = zdc_parse_mem(inst, true, assign); break; case DC_LEX_LOAD: case DC_LEX_LOAD_POP: dbg_lex("%s:%d LEX_OP_LOAD[_POP]", __func__, __LINE__); inst = t == DC_LEX_LOAD_POP ? DC_INST_PUSH_VAR : DC_INST_LOAD; s = zdc_parse_mem(inst, true, false); break; case DC_LEX_STORE_IBASE: case DC_LEX_STORE_SCALE: case DC_LEX_STORE_OBASE: dbg_lex("%s:%d LEX_OP_STORE_I/OBASE/SCALE", __func__, __LINE__); inst = t - DC_LEX_STORE_IBASE + XC_INST_IBASE; s = zdc_parse_mem(inst, false, true); break; default: dbg_lex_done("%s:%d done (bad token)", __func__, __LINE__); RETURN_STATUS(bc_error_bad_token()); } if (!s && get_token) s = zxc_lex_next(); dbg_lex_done("%s:%d done", __func__, __LINE__); RETURN_STATUS(s); } #define zdc_parse_token(...) (zdc_parse_token(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zdc_parse_expr(void) { BcParse *p = &G.prs; int i; if (p->lex == XC_LEX_NLINE) RETURN_STATUS(zxc_lex_next()); i = (int)p->lex - (int)XC_LEX_OP_POWER; if (i >= 0) { BcInst inst = dc_LEX_to_INST[i]; if (inst != DC_INST_INVALID) { xc_parse_push(inst); RETURN_STATUS(zxc_lex_next()); } } RETURN_STATUS(zdc_parse_token(p->lex)); } #define zdc_parse_expr(...) (zdc_parse_expr(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zdc_parse_exprs_until_eof(void) { BcParse *p = &G.prs; dbg_lex_enter("%s:%d entered, p->lex:%d", __func__, __LINE__, p->lex); while (p->lex != XC_LEX_EOF) { BcStatus s = zdc_parse_expr(); if (s) RETURN_STATUS(s); } dbg_lex_done("%s:%d done", __func__, __LINE__); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zdc_parse_exprs_until_eof(...) (zdc_parse_exprs_until_eof(__VA_ARGS__) COMMA_SUCCESS) #endif // ENABLE_DC // // Execution engine // #define BC_PROG_STR(n) (!(n)->num && !(n)->cap) #define BC_PROG_NUM(r, n) \ ((r)->t != XC_RESULT_ARRAY && (r)->t != XC_RESULT_STR && !BC_PROG_STR(n)) #define STACK_HAS_MORE_THAN(s, n) ((s)->len > ((size_t)(n))) #define STACK_HAS_EQUAL_OR_MORE_THAN(s, n) ((s)->len >= ((size_t)(n))) static size_t xc_program_index(char *code, size_t *bgn) { unsigned char *bytes = (void*)(code + *bgn); unsigned amt; unsigned i; size_t res; amt = *bytes++; if (amt < SMALL_INDEX_LIMIT) { *bgn += 1; return amt; } amt -= (SMALL_INDEX_LIMIT - 1); // amt is 1 or more here *bgn += amt + 1; res = 0; i = 0; do { res |= (size_t)(*bytes++) << i; i += 8; } while (--amt != 0); return res; } static char *xc_program_name(char *code, size_t *bgn) { code += *bgn; *bgn += strlen(code) + 1; return xstrdup(code); } static BcVec* xc_program_dereference(BcVec *vec) { BcVec *v; size_t vidx, nidx, i = 0; //assert(vec->size == sizeof(uint8_t)); vidx = xc_program_index(vec->v, &i); nidx = xc_program_index(vec->v, &i); v = bc_vec_item(&G.prog.arrs, vidx); v = bc_vec_item(v, nidx); //assert(v->size != sizeof(uint8_t)); return v; } static BcVec* xc_program_search(char *id, BcType type) { BcId e, *ptr; BcVec *v, *map; size_t i; int new; bool var = (type == BC_TYPE_VAR); v = var ? &G.prog.vars : &G.prog.arrs; map = var ? &G.prog.var_map : &G.prog.arr_map; e.name = id; e.idx = v->len; new = bc_map_insert(map, &e, &i); // 1 if insertion was successful if (new) { BcVec v2; bc_array_init(&v2, var); bc_vec_push(v, &v2); } ptr = bc_vec_item(map, i); if (new) ptr->name = xstrdup(e.name); return bc_vec_item(v, ptr->idx); } // 'num' need not be initialized on entry static BC_STATUS zxc_program_num(BcResult *r, BcNum **num) { switch (r->t) { case XC_RESULT_STR: case XC_RESULT_TEMP: IF_BC(case BC_RESULT_VOID:) case XC_RESULT_IBASE: case XC_RESULT_SCALE: case XC_RESULT_OBASE: *num = &r->d.n; break; case XC_RESULT_CONSTANT: { BcStatus s; char *str; size_t len; str = *xc_program_const(r->d.id.idx); len = strlen(str); bc_num_init(&r->d.n, len); s = zxc_num_parse(&r->d.n, str, G.prog.ib_t); if (s) { bc_num_free(&r->d.n); RETURN_STATUS(s); } *num = &r->d.n; r->t = XC_RESULT_TEMP; break; } case XC_RESULT_VAR: case XC_RESULT_ARRAY: case XC_RESULT_ARRAY_ELEM: { BcType type = (r->t == XC_RESULT_VAR) ? BC_TYPE_VAR : BC_TYPE_ARRAY; BcVec *v = xc_program_search(r->d.id.name, type); void *p = bc_vec_top(v); if (r->t == XC_RESULT_ARRAY_ELEM) { size_t idx = r->d.id.idx; v = p; if (v->size == sizeof(uint8_t)) v = xc_program_dereference(v); //assert(v->size == sizeof(BcNum)); if (v->len <= idx) bc_array_expand(v, idx + 1); *num = bc_vec_item(v, idx); } else { *num = p; } break; } #if ENABLE_BC case BC_RESULT_LAST: *num = &G.prog.last; break; case BC_RESULT_ONE: *num = &G.prog.one; break; #endif #if SANITY_CHECKS default: // Testing the theory that dc does not reach LAST/ONE bb_error_msg_and_die("BUG:%d", r->t); #endif } RETURN_STATUS(BC_STATUS_SUCCESS); } #define zxc_program_num(...) (zxc_program_num(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_program_binOpPrep(BcResult **l, BcNum **ln, BcResult **r, BcNum **rn, bool assign) { BcStatus s; BcResultType lt, rt; if (!STACK_HAS_MORE_THAN(&G.prog.results, 1)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); *r = bc_vec_item_rev(&G.prog.results, 0); *l = bc_vec_item_rev(&G.prog.results, 1); s = zxc_program_num(*l, ln); if (s) RETURN_STATUS(s); s = zxc_program_num(*r, rn); if (s) RETURN_STATUS(s); lt = (*l)->t; rt = (*r)->t; // We run this again under these conditions in case any vector has been // reallocated out from under the BcNums or arrays we had. if (lt == rt && (lt == XC_RESULT_VAR || lt == XC_RESULT_ARRAY_ELEM)) { s = zxc_program_num(*l, ln); if (s) RETURN_STATUS(s); } if (!BC_PROG_NUM((*l), (*ln)) && (!assign || (*l)->t != XC_RESULT_VAR)) RETURN_STATUS(bc_error_variable_is_wrong_type()); if (!assign && !BC_PROG_NUM((*r), (*ln))) RETURN_STATUS(bc_error_variable_is_wrong_type()); RETURN_STATUS(s); } #define zxc_program_binOpPrep(...) (zxc_program_binOpPrep(__VA_ARGS__) COMMA_SUCCESS) static void xc_program_binOpRetire(BcResult *r) { r->t = XC_RESULT_TEMP; bc_vec_pop(&G.prog.results); bc_result_pop_and_push(r); } // Note: *r and *n need not be initialized by caller static BC_STATUS zxc_program_prep(BcResult **r, BcNum **n) { BcStatus s; if (!STACK_HAS_MORE_THAN(&G.prog.results, 0)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); *r = bc_vec_top(&G.prog.results); s = zxc_program_num(*r, n); if (s) RETURN_STATUS(s); if (!BC_PROG_NUM((*r), (*n))) RETURN_STATUS(bc_error_variable_is_wrong_type()); RETURN_STATUS(s); } #define zxc_program_prep(...) (zxc_program_prep(__VA_ARGS__) COMMA_SUCCESS) static void xc_program_retire(BcResult *r, BcResultType t) { r->t = t; bc_result_pop_and_push(r); } static BC_STATUS zxc_program_op(char inst) { BcStatus s; BcResult *opd1, *opd2, res; BcNum *n1, *n2; s = zxc_program_binOpPrep(&opd1, &n1, &opd2, &n2, false); if (s) RETURN_STATUS(s); bc_num_init_DEF_SIZE(&res.d.n); s = BC_STATUS_SUCCESS; IF_ERROR_RETURN_POSSIBLE(s =) zxc_program_ops[inst - XC_INST_POWER](n1, n2, &res.d.n, G.prog.scale); if (s) goto err; xc_program_binOpRetire(&res); RETURN_STATUS(s); err: bc_num_free(&res.d.n); RETURN_STATUS(s); } #define zxc_program_op(...) (zxc_program_op(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_program_read(void) { BcStatus s; BcParse sv_parse; BcVec buf; BcInstPtr ip; BcFunc *f; bc_char_vec_init(&buf); xc_read_line(&buf, stdin); f = xc_program_func(BC_PROG_READ); bc_vec_pop_all(&f->code); sv_parse = G.prs; // struct copy xc_parse_create(BC_PROG_READ); //G.err_line = G.prs.lex_line = 1; - not needed, error line info is not printed for read() s = zxc_parse_text_init(buf.v); if (s) goto exec_err; if (IS_BC) { IF_BC(s = zbc_parse_expr(0)); } else { IF_DC(s = zdc_parse_exprs_until_eof()); } if (s) goto exec_err; if (G.prs.lex != XC_LEX_NLINE && G.prs.lex != XC_LEX_EOF) { s = bc_error_at("bad read() expression"); goto exec_err; } xc_parse_push(XC_INST_RET); ip.func = BC_PROG_READ; ip.inst_idx = 0; bc_vec_push(&G.prog.exestack, &ip); exec_err: xc_parse_free(); G.prs = sv_parse; // struct copy bc_vec_free(&buf); RETURN_STATUS(s); } #define zxc_program_read(...) (zxc_program_read(__VA_ARGS__) COMMA_SUCCESS) static void xc_program_printString(const char *str) { #if ENABLE_DC if (!str[0] && IS_DC) { // Example: echo '[]ap' | dc // should print two bytes: 0x00, 0x0A bb_putchar('\0'); return; } #endif while (*str) { char c = *str++; if (c == '\\') { static const char esc[] ALIGN1 = "nabfrt""e\\"; char *n; c = *str++; n = strchr(esc, c); // note: if c is NUL, n = \0 at end of esc if (!n || !c) { // Just print the backslash and following character bb_putchar('\\'); ++G.prog.nchars; // But if we're at the end of the string, stop if (!c) break; } else { if (n - esc == 0) // "\n" ? G.prog.nchars = SIZE_MAX; c = "\n\a\b\f\r\t""\\\\""\\"[n - esc]; // n a b f r t e \ \ } } putchar(c); ++G.prog.nchars; } } static void bc_num_printNewline(void) { if (G.prog.nchars == G.prog.len - 1) { bb_putchar('\\'); bb_putchar('\n'); G.prog.nchars = 0; } } #if ENABLE_DC static FAST_FUNC void dc_num_printChar(size_t num, size_t width, bool radix) { (void) radix; bb_putchar((char) num); G.prog.nchars += width; } #endif static FAST_FUNC void bc_num_printDigits(size_t num, size_t width, bool radix) { size_t exp, pow; bc_num_printNewline(); bb_putchar(radix ? '.' : ' '); ++G.prog.nchars; bc_num_printNewline(); for (exp = 0, pow = 1; exp < width - 1; ++exp, pow *= 10) continue; for (exp = 0; exp < width; pow /= 10, ++G.prog.nchars, ++exp) { size_t dig; bc_num_printNewline(); dig = num / pow; num -= dig * pow; bb_putchar(((char) dig) + '0'); } } static FAST_FUNC void bc_num_printHex(size_t num, size_t width, bool radix) { if (radix) { bc_num_printNewline(); bb_putchar('.'); G.prog.nchars++; } bc_num_printNewline(); bb_putchar(bb_hexdigits_upcase[num]); G.prog.nchars += width; } static void bc_num_printDecimal(BcNum *n) { size_t i, rdx = n->rdx - 1; if (n->neg) { bb_putchar('-'); G.prog.nchars++; } for (i = n->len - 1; i < n->len; --i) bc_num_printHex((size_t) n->num[i], 1, i == rdx); } typedef void (*BcNumDigitOp)(size_t, size_t, bool) FAST_FUNC; static BC_STATUS zxc_num_printNum(BcNum *n, unsigned base_t, size_t width, BcNumDigitOp print) { BcStatus s; BcVec stack; BcNum base; BcDig base_digs[ULONG_NUM_BUFSIZE]; BcNum intp, fracp, digit, frac_len; unsigned long dig, *ptr; size_t i; bool radix; if (n->len == 0) { print(0, width, false); RETURN_STATUS(BC_STATUS_SUCCESS); } bc_vec_init(&stack, sizeof(long), NULL); bc_num_init_and_copy(&intp, n); bc_num_init(&fracp, n->rdx); bc_num_init(&digit, width); bc_num_init(&frac_len, BC_NUM_INT(n)); bc_num_one(&frac_len); base.cap = ARRAY_SIZE(base_digs); base.num = base_digs; bc_num_ulong2num(&base, base_t); bc_num_truncate(&intp, intp.rdx); s = zbc_num_sub(n, &intp, &fracp, 0); if (s) goto err; while (intp.len != 0) { s = zbc_num_divmod(&intp, &base, &intp, &digit, 0); if (s) goto err; s = zbc_num_ulong(&digit, &dig); if (s) goto err; bc_vec_push(&stack, &dig); } for (i = 0; i < stack.len; ++i) { ptr = bc_vec_item_rev(&stack, i); print(*ptr, width, false); } if (!n->rdx) goto err; for (radix = true; frac_len.len <= n->rdx; radix = false) { s = zbc_num_mul(&fracp, &base, &fracp, n->rdx); if (s) goto err; s = zbc_num_ulong(&fracp, &dig); if (s) goto err; bc_num_ulong2num(&intp, dig); s = zbc_num_sub(&fracp, &intp, &fracp, 0); if (s) goto err; print(dig, width, radix); s = zbc_num_mul(&frac_len, &base, &frac_len, 0); if (s) goto err; } err: bc_num_free(&frac_len); bc_num_free(&digit); bc_num_free(&fracp); bc_num_free(&intp); bc_vec_free(&stack); RETURN_STATUS(s); } #define zxc_num_printNum(...) (zxc_num_printNum(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_num_printBase(BcNum *n) { BcStatus s; size_t width; BcNumDigitOp print; bool neg = n->neg; if (neg) { bb_putchar('-'); G.prog.nchars++; } n->neg = false; if (G.prog.ob_t <= 16) { width = 1; print = bc_num_printHex; } else { unsigned i = G.prog.ob_t - 1; width = 0; for (;;) { width++; i /= 10; if (i == 0) break; } print = bc_num_printDigits; } s = zxc_num_printNum(n, G.prog.ob_t, width, print); n->neg = neg; RETURN_STATUS(s); } #define zxc_num_printBase(...) (zxc_num_printBase(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_num_print(BcNum *n, bool newline) { BcStatus s = BC_STATUS_SUCCESS; bc_num_printNewline(); if (n->len == 0) { bb_putchar('0'); ++G.prog.nchars; } else if (G.prog.ob_t == 10) bc_num_printDecimal(n); else s = zxc_num_printBase(n); if (newline) { bb_putchar('\n'); G.prog.nchars = 0; } RETURN_STATUS(s); } #define zxc_num_print(...) (zxc_num_print(__VA_ARGS__) COMMA_SUCCESS) #if !ENABLE_DC // for bc, idx is always 0 #define xc_program_print(inst, idx) \ xc_program_print(inst) #endif static BC_STATUS xc_program_print(char inst, size_t idx) { BcStatus s; BcResult *r; BcNum *num; IF_NOT_DC(size_t idx = 0); if (!STACK_HAS_MORE_THAN(&G.prog.results, idx)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); r = bc_vec_item_rev(&G.prog.results, idx); #if ENABLE_BC if (inst == XC_INST_PRINT && r->t == BC_RESULT_VOID) // void function's result on stack, ignore RETURN_STATUS(BC_STATUS_SUCCESS); #endif s = zxc_program_num(r, &num); if (s) RETURN_STATUS(s); if (BC_PROG_NUM(r, num)) { s = zxc_num_print(num, /*newline:*/ inst == XC_INST_PRINT); #if ENABLE_BC if (!s && IS_BC) bc_num_copy(&G.prog.last, num); #endif } else { char *str; idx = (r->t == XC_RESULT_STR) ? r->d.id.idx : num->rdx; str = *xc_program_str(idx); if (inst == XC_INST_PRINT_STR) { char *nl; G.prog.nchars += printf("%s", str); nl = strrchr(str, '\n'); if (nl) G.prog.nchars = strlen(nl + 1); } else { xc_program_printString(str); if (inst == XC_INST_PRINT) bb_putchar('\n'); } } if (!s && inst != XC_INST_PRINT) bc_vec_pop(&G.prog.results); RETURN_STATUS(s); } #define zxc_program_print(...) (xc_program_print(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_program_negate(void) { BcStatus s; BcResult res, *ptr; BcNum *num; s = zxc_program_prep(&ptr, &num); if (s) RETURN_STATUS(s); bc_num_init_and_copy(&res.d.n, num); if (res.d.n.len) res.d.n.neg = !res.d.n.neg; xc_program_retire(&res, XC_RESULT_TEMP); RETURN_STATUS(s); } #define zxc_program_negate(...) (zxc_program_negate(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_program_logical(char inst) { BcStatus s; BcResult *opd1, *opd2, res; BcNum *n1, *n2; ssize_t cond; s = zxc_program_binOpPrep(&opd1, &n1, &opd2, &n2, false); if (s) RETURN_STATUS(s); bc_num_init_DEF_SIZE(&res.d.n); if (inst == XC_INST_BOOL_AND) cond = bc_num_cmp(n1, &G.prog.zero) && bc_num_cmp(n2, &G.prog.zero); else if (inst == XC_INST_BOOL_OR) cond = bc_num_cmp(n1, &G.prog.zero) || bc_num_cmp(n2, &G.prog.zero); else { cond = bc_num_cmp(n1, n2); switch (inst) { case XC_INST_REL_EQ: cond = (cond == 0); break; case XC_INST_REL_LE: cond = (cond <= 0); break; case XC_INST_REL_GE: cond = (cond >= 0); break; case XC_INST_REL_LT: cond = (cond < 0); break; case XC_INST_REL_GT: cond = (cond > 0); break; default: // = case XC_INST_REL_NE: //cond = (cond != 0); - not needed break; } } if (cond) bc_num_one(&res.d.n); //else bc_num_zero(&res.d.n); - already is xc_program_binOpRetire(&res); RETURN_STATUS(s); } #define zxc_program_logical(...) (zxc_program_logical(__VA_ARGS__) COMMA_SUCCESS) #if ENABLE_DC static BC_STATUS zdc_program_assignStr(BcResult *r, BcVec *v, bool push) { BcNum n2; BcResult res; memset(&n2, 0, sizeof(BcNum)); n2.rdx = res.d.id.idx = r->d.id.idx; res.t = XC_RESULT_STR; if (!push) { if (!STACK_HAS_MORE_THAN(&G.prog.results, 1)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); bc_vec_pop(v); bc_vec_pop(&G.prog.results); } bc_result_pop_and_push(&res); bc_vec_push(v, &n2); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zdc_program_assignStr(...) (zdc_program_assignStr(__VA_ARGS__) COMMA_SUCCESS) #endif // ENABLE_DC static BC_STATUS zxc_program_popResultAndCopyToVar(char *name, BcType t) { BcStatus s; BcResult *ptr, r; BcVec *vec; BcNum *n; bool var = (t == BC_TYPE_VAR); if (!STACK_HAS_MORE_THAN(&G.prog.results, 0)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); ptr = bc_vec_top(&G.prog.results); if ((ptr->t == XC_RESULT_ARRAY) == var) RETURN_STATUS(bc_error_variable_is_wrong_type()); vec = xc_program_search(name, t); #if ENABLE_DC if (ptr->t == XC_RESULT_STR) { if (!var) RETURN_STATUS(bc_error_variable_is_wrong_type()); RETURN_STATUS(zdc_program_assignStr(ptr, vec, true)); } #endif s = zxc_program_num(ptr, &n); if (s) RETURN_STATUS(s); // Do this once more to make sure that pointers were not invalidated. vec = xc_program_search(name, t); if (var) { bc_num_init_DEF_SIZE(&r.d.n); bc_num_copy(&r.d.n, n); } else { BcVec *v = (BcVec*) n; bool ref, ref_size; ref = (v->size == sizeof(BcVec) && t != BC_TYPE_ARRAY); ref_size = (v->size == sizeof(uint8_t)); if (ref || (ref_size && t == BC_TYPE_REF)) { bc_vec_init(&r.d.v, sizeof(uint8_t), NULL); if (ref) { size_t vidx, idx; BcId id; id.name = ptr->d.id.name; v = xc_program_search(ptr->d.id.name, BC_TYPE_REF); // Make sure the pointer was not invalidated. vec = xc_program_search(name, t); vidx = bc_map_find_exact(&G.prog.arr_map, &id); //assert(vidx != BC_VEC_INVALID_IDX); vidx = ((BcId*) bc_vec_item(&G.prog.arr_map, vidx))->idx; idx = v->len - 1; bc_vec_pushIndex(&r.d.v, vidx); bc_vec_pushIndex(&r.d.v, idx); } // If we get here, we are copying a ref to a ref. else bc_vec_npush(&r.d.v, v->len, v->v); // We need to return early. goto ret; } if (ref_size && t != BC_TYPE_REF) v = xc_program_dereference(v); bc_array_init(&r.d.v, true); bc_array_copy(&r.d.v, v); } ret: bc_vec_push(vec, &r.d); bc_vec_pop(&G.prog.results); RETURN_STATUS(s); } #define zxc_program_popResultAndCopyToVar(...) (zxc_program_popResultAndCopyToVar(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_program_assign(char inst) { BcStatus s; BcResult *left, *right, res; BcNum *l, *r; bool assign = (inst == XC_INST_ASSIGN); bool ib, sc; s = zxc_program_binOpPrep(&left, &l, &right, &r, assign); if (s) RETURN_STATUS(s); ib = left->t == XC_RESULT_IBASE; sc = left->t == XC_RESULT_SCALE; #if ENABLE_DC if (right->t == XC_RESULT_STR) { BcVec *v; if (left->t != XC_RESULT_VAR) RETURN_STATUS(bc_error_variable_is_wrong_type()); v = xc_program_search(left->d.id.name, BC_TYPE_VAR); RETURN_STATUS(zdc_program_assignStr(right, v, false)); } #endif if (left->t == XC_RESULT_CONSTANT || left->t == XC_RESULT_TEMP IF_BC(|| left->t == BC_RESULT_VOID) ) { RETURN_STATUS(bc_error_bad_assignment()); } #if ENABLE_BC if (assign) bc_num_copy(l, r); else { s = BC_STATUS_SUCCESS; IF_ERROR_RETURN_POSSIBLE(s =) zxc_program_ops[inst - BC_INST_ASSIGN_POWER](l, r, l, G.prog.scale); } if (s) RETURN_STATUS(s); #else bc_num_copy(l, r); #endif if (ib || sc || left->t == XC_RESULT_OBASE) { static const char *const msg[] ALIGN_PTR = { "bad ibase; must be [2,16]", //XC_RESULT_IBASE "bad obase; must be [2,"BC_MAX_OBASE_STR"]", //XC_RESULT_OBASE "bad scale; must be [0,"BC_MAX_SCALE_STR"]", //XC_RESULT_SCALE }; size_t *ptr; size_t max; unsigned long val; s = zbc_num_ulong(l, &val); if (s) RETURN_STATUS(s); s = left->t - XC_RESULT_IBASE; if (sc) { max = BC_MAX_SCALE; ptr = &G.prog.scale; } else { if (val < 2) RETURN_STATUS(bc_error(msg[s])); max = ib ? BC_NUM_MAX_IBASE : BC_MAX_OBASE; ptr = ib ? &G.prog.ib_t : &G.prog.ob_t; } if (val > max) RETURN_STATUS(bc_error(msg[s])); *ptr = (size_t) val; s = BC_STATUS_SUCCESS; } bc_num_init_and_copy(&res.d.n, l); xc_program_binOpRetire(&res); RETURN_STATUS(s); } #define zxc_program_assign(...) (zxc_program_assign(__VA_ARGS__) COMMA_SUCCESS) #if !ENABLE_DC #define xc_program_pushVar(code, bgn, pop, copy) \ xc_program_pushVar(code, bgn) // for bc, 'pop' and 'copy' are always false #endif static BC_STATUS xc_program_pushVar(char *code, size_t *bgn, bool pop, bool copy) { BcResult r; char *name = xc_program_name(code, bgn); r.t = XC_RESULT_VAR; r.d.id.name = name; #if ENABLE_DC if (pop || copy) { BcVec *v = xc_program_search(name, BC_TYPE_VAR); BcNum *num = bc_vec_top(v); free(name); if (!STACK_HAS_MORE_THAN(v, 1 - copy)) { RETURN_STATUS(bc_error_stack_has_too_few_elements()); } if (!BC_PROG_STR(num)) { r.t = XC_RESULT_TEMP; bc_num_init_DEF_SIZE(&r.d.n); bc_num_copy(&r.d.n, num); } else { r.t = XC_RESULT_STR; r.d.id.idx = num->rdx; } if (!copy) bc_vec_pop(v); } #endif // ENABLE_DC bc_vec_push(&G.prog.results, &r); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zxc_program_pushVar(...) (xc_program_pushVar(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_program_pushArray(char *code, size_t *bgn, char inst) { BcStatus s = BC_STATUS_SUCCESS; BcResult r; BcNum *num; r.d.id.name = xc_program_name(code, bgn); if (inst == XC_INST_ARRAY) { r.t = XC_RESULT_ARRAY; bc_vec_push(&G.prog.results, &r); } else { BcResult *operand; unsigned long temp; s = zxc_program_prep(&operand, &num); if (s) goto err; s = zbc_num_ulong(num, &temp); if (s) goto err; if (temp > BC_MAX_DIM) { s = bc_error("array too long; must be [1,"BC_MAX_DIM_STR"]"); goto err; } r.d.id.idx = (size_t) temp; xc_program_retire(&r, XC_RESULT_ARRAY_ELEM); } err: if (s) free(r.d.id.name); RETURN_STATUS(s); } #define zbc_program_pushArray(...) (zbc_program_pushArray(__VA_ARGS__) COMMA_SUCCESS) #if ENABLE_BC static BC_STATUS zbc_program_incdec(char inst) { BcStatus s; BcResult *ptr, res, copy; BcNum *num; char inst2 = inst; s = zxc_program_prep(&ptr, &num); if (s) RETURN_STATUS(s); if (inst == BC_INST_INC_POST || inst == BC_INST_DEC_POST) { copy.t = XC_RESULT_TEMP; bc_num_init_and_copy(©.d.n, num); } res.t = BC_RESULT_ONE; inst = (inst == BC_INST_INC_PRE || inst == BC_INST_INC_POST) ? BC_INST_ASSIGN_PLUS : BC_INST_ASSIGN_MINUS; bc_vec_push(&G.prog.results, &res); s = zxc_program_assign(inst); if (s) RETURN_STATUS(s); if (inst2 == BC_INST_INC_POST || inst2 == BC_INST_DEC_POST) { bc_result_pop_and_push(©); } RETURN_STATUS(s); } #define zbc_program_incdec(...) (zbc_program_incdec(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_program_call(char *code, size_t *idx) { BcInstPtr ip; size_t i, nparams; BcId *a; BcFunc *func; nparams = xc_program_index(code, idx); ip.func = xc_program_index(code, idx); func = xc_program_func(ip.func); if (func->code.len == 0) { RETURN_STATUS(bc_error("undefined function")); } if (nparams != func->nparams) { RETURN_STATUS(bc_error_fmt("function has %u parameters, but called with %u", func->nparams, nparams)); } ip.inst_idx = 0; for (i = 0; i < nparams; ++i) { BcResult *arg; BcStatus s; bool arr; a = bc_vec_item(&func->autos, nparams - 1 - i); arg = bc_vec_top(&G.prog.results); arr = (a->idx == BC_TYPE_ARRAY || a->idx == BC_TYPE_REF); if (arr != (arg->t == XC_RESULT_ARRAY) // array/variable mismatch // || arg->t == XC_RESULT_STR - impossible, f("str") is not a legal syntax (strings are not bc expressions) ) { RETURN_STATUS(bc_error_variable_is_wrong_type()); } s = zxc_program_popResultAndCopyToVar(a->name, (BcType) a->idx); if (s) RETURN_STATUS(s); } a = bc_vec_item(&func->autos, i); for (; i < func->autos.len; i++, a++) { BcVec *v; v = xc_program_search(a->name, (BcType) a->idx); if (a->idx == BC_TYPE_VAR) { BcNum n2; bc_num_init_DEF_SIZE(&n2); bc_vec_push(v, &n2); } else { //assert(a->idx == BC_TYPE_ARRAY); BcVec v2; bc_array_init(&v2, true); bc_vec_push(v, &v2); } } bc_vec_push(&G.prog.exestack, &ip); RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_program_call(...) (zbc_program_call(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zbc_program_return(char inst) { BcResult res; BcFunc *f; BcId *a; size_t i; BcInstPtr *ip = bc_vec_top(&G.prog.exestack); f = xc_program_func(ip->func); res.t = XC_RESULT_TEMP; if (inst == XC_INST_RET) { // bc needs this for e.g. RESULT_CONSTANT ("return 5") // because bc constants are per-function. // TODO: maybe avoid if value is already RESULT_TEMP? BcStatus s; BcNum *num; BcResult *operand = bc_vec_top(&G.prog.results); s = zxc_program_num(operand, &num); if (s) RETURN_STATUS(s); bc_num_init_and_copy(&res.d.n, num); bc_vec_pop(&G.prog.results); } else { if (f->voidfunc) res.t = BC_RESULT_VOID; bc_num_init_DEF_SIZE(&res.d.n); //bc_num_zero(&res.d.n); - already is } bc_vec_push(&G.prog.results, &res); bc_vec_pop(&G.prog.exestack); // We need to pop arguments as well, so this takes that into account. a = (void*)f->autos.v; for (i = 0; i < f->autos.len; i++, a++) { BcVec *v; v = xc_program_search(a->name, (BcType) a->idx); bc_vec_pop(v); } RETURN_STATUS(BC_STATUS_SUCCESS); } #define zbc_program_return(...) (zbc_program_return(__VA_ARGS__) COMMA_SUCCESS) #endif // ENABLE_BC static unsigned long xc_program_scale(BcNum *n) { return (unsigned long) n->rdx; } static unsigned long xc_program_len(BcNum *n) { size_t len = n->len; if (n->rdx != len) // length(100): rdx 0 len 3, return 3 // length(0.01-0.01): rdx 2 len 0, return 2 // dc: 0.01 0.01 - Zp: rdx 2 len 0, return 1 return len != 0 ? len : (IS_BC ? n->rdx : 1); // length(0): return 1 // length(0.000nnn): count nnn for (;;) { if (len == 0) break; len--; if (n->num[len] != 0) break; } return len + 1; } static BC_STATUS zxc_program_builtin(char inst) { BcStatus s; BcResult *opnd; BcNum *num; BcResult res; bool len = (inst == XC_INST_LENGTH); if (!STACK_HAS_MORE_THAN(&G.prog.results, 0)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); opnd = bc_vec_top(&G.prog.results); s = zxc_program_num(opnd, &num); if (s) RETURN_STATUS(s); #if ENABLE_DC if (!BC_PROG_NUM(opnd, num) && !len) RETURN_STATUS(bc_error_variable_is_wrong_type()); #endif bc_num_init_DEF_SIZE(&res.d.n); if (inst == XC_INST_SQRT) s = zbc_num_sqrt(num, &res.d.n, G.prog.scale); #if ENABLE_BC else if (len && opnd->t == XC_RESULT_ARRAY) { bc_num_ulong2num(&res.d.n, (unsigned long) ((BcVec *) num)->len); } #endif #if ENABLE_DC else if (len && !BC_PROG_NUM(opnd, num)) { char **str; size_t idx = opnd->t == XC_RESULT_STR ? opnd->d.id.idx : num->rdx; str = xc_program_str(idx); bc_num_ulong2num(&res.d.n, strlen(*str)); } #endif else { //TODO: length(.00) and scale(.00) should return 2, they return 1 and 0 now //(don't forget to check that dc Z and X commands do not break) bc_num_ulong2num(&res.d.n, len ? xc_program_len(num) : xc_program_scale(num)); } xc_program_retire(&res, XC_RESULT_TEMP); RETURN_STATUS(s); } #define zxc_program_builtin(...) (zxc_program_builtin(__VA_ARGS__) COMMA_SUCCESS) #if ENABLE_DC static BC_STATUS zdc_program_divmod(void) { BcStatus s; BcResult *opd1, *opd2, res, res2; BcNum *n1, *n2; s = zxc_program_binOpPrep(&opd1, &n1, &opd2, &n2, false); if (s) RETURN_STATUS(s); bc_num_init_DEF_SIZE(&res.d.n); bc_num_init(&res2.d.n, n2->len); s = zbc_num_divmod(n1, n2, &res2.d.n, &res.d.n, G.prog.scale); if (s) goto err; xc_program_binOpRetire(&res2); res.t = XC_RESULT_TEMP; bc_vec_push(&G.prog.results, &res); RETURN_STATUS(s); err: bc_num_free(&res2.d.n); bc_num_free(&res.d.n); RETURN_STATUS(s); } #define zdc_program_divmod(...) (zdc_program_divmod(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zdc_program_modexp(void) { BcStatus s; BcResult *r1, *r2, *r3, res; BcNum *n1, *n2, *n3; if (!STACK_HAS_MORE_THAN(&G.prog.results, 2)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); s = zxc_program_binOpPrep(&r2, &n2, &r3, &n3, false); if (s) RETURN_STATUS(s); r1 = bc_vec_item_rev(&G.prog.results, 2); s = zxc_program_num(r1, &n1); if (s) RETURN_STATUS(s); if (!BC_PROG_NUM(r1, n1)) RETURN_STATUS(bc_error_variable_is_wrong_type()); // Make sure that the values have their pointers updated, if necessary. if (r1->t == XC_RESULT_VAR || r1->t == XC_RESULT_ARRAY_ELEM) { if (r1->t == r2->t) { s = zxc_program_num(r2, &n2); if (s) RETURN_STATUS(s); } if (r1->t == r3->t) { s = zxc_program_num(r3, &n3); if (s) RETURN_STATUS(s); } } bc_num_init(&res.d.n, n3->len); s = zdc_num_modexp(n1, n2, n3, &res.d.n); if (s) goto err; bc_vec_pop(&G.prog.results); xc_program_binOpRetire(&res); RETURN_STATUS(s); err: bc_num_free(&res.d.n); RETURN_STATUS(s); } #define zdc_program_modexp(...) (zdc_program_modexp(__VA_ARGS__) COMMA_SUCCESS) static void dc_program_stackLen(void) { BcResult res; size_t len = G.prog.results.len; res.t = XC_RESULT_TEMP; bc_num_init_DEF_SIZE(&res.d.n); bc_num_ulong2num(&res.d.n, len); bc_vec_push(&G.prog.results, &res); } static BC_STATUS zdc_program_asciify(void) { BcStatus s; BcResult *r, res; BcNum *num, n; char **strs; char *str; char c; size_t idx; if (!STACK_HAS_MORE_THAN(&G.prog.results, 0)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); r = bc_vec_top(&G.prog.results); s = zxc_program_num(r, &num); if (s) RETURN_STATUS(s); if (BC_PROG_NUM(r, num)) { unsigned long val; BcNum strmb; BcDig strmb_digs[ULONG_NUM_BUFSIZE]; bc_num_init_DEF_SIZE(&n); bc_num_copy(&n, num); bc_num_truncate(&n, n.rdx); strmb.cap = ARRAY_SIZE(strmb_digs); strmb.num = strmb_digs; bc_num_ulong2num(&strmb, 0x100); s = zbc_num_mod(&n, &strmb, &n, 0); if (s) goto num_err; s = zbc_num_ulong(&n, &val); if (s) goto num_err; c = (char) val; bc_num_free(&n); } else { char *sp; idx = (r->t == XC_RESULT_STR) ? r->d.id.idx : num->rdx; sp = *xc_program_str(idx); c = sp[0]; } strs = (void*)G.prog.strs.v; for (idx = 0; idx < G.prog.strs.len; idx++) { if (strs[idx][0] == c && strs[idx][1] == '\0') { goto dup; } } str = xzalloc(2); str[0] = c; //str[1] = '\0'; - already is idx = bc_vec_push(&G.prog.strs, &str); // Add an empty function so that if zdc_program_execStr ever needs to // parse the string into code (from the 'x' command) there's somewhere // to store the bytecode. xc_program_add_fn(); dup: res.t = XC_RESULT_STR; res.d.id.idx = idx; bc_result_pop_and_push(&res); RETURN_STATUS(BC_STATUS_SUCCESS); num_err: bc_num_free(&n); RETURN_STATUS(s); } #define zdc_program_asciify(...) (zdc_program_asciify(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zdc_program_printStream(void) { BcStatus s; BcResult *r; BcNum *n; size_t idx; if (!STACK_HAS_MORE_THAN(&G.prog.results, 0)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); r = bc_vec_top(&G.prog.results); s = zxc_program_num(r, &n); if (s) RETURN_STATUS(s); if (BC_PROG_NUM(r, n)) { s = zxc_num_printNum(n, 0x100, 1, dc_num_printChar); } else { char *str; idx = (r->t == XC_RESULT_STR) ? r->d.id.idx : n->rdx; str = *xc_program_str(idx); fputs_stdout(str); } RETURN_STATUS(s); } #define zdc_program_printStream(...) (zdc_program_printStream(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zdc_program_nquit(void) { BcStatus s; BcResult *opnd; BcNum *num; unsigned long val; s = zxc_program_prep(&opnd, &num); if (s) RETURN_STATUS(s); s = zbc_num_ulong(num, &val); if (s) RETURN_STATUS(s); bc_vec_pop(&G.prog.results); if (G.prog.exestack.len < val) RETURN_STATUS(bc_error_stack_has_too_few_elements()); if (G.prog.exestack.len == val) { QUIT_OR_RETURN_TO_MAIN; } bc_vec_npop(&G.prog.exestack, val); RETURN_STATUS(s); } #define zdc_program_nquit(...) (zdc_program_nquit(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zdc_program_execStr(char *code, size_t *bgn, bool cond) { BcStatus s = BC_STATUS_SUCCESS; BcResult *r; BcFunc *f; BcInstPtr ip; size_t fidx, sidx; if (!STACK_HAS_MORE_THAN(&G.prog.results, 0)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); r = bc_vec_top(&G.prog.results); if (cond) { BcNum *n = n; // for compiler bool exec; char *name; char *then_name = xc_program_name(code, bgn); char *else_name = NULL; if (code[*bgn] == '\0') (*bgn) += 1; else else_name = xc_program_name(code, bgn); exec = r->d.n.len != 0; name = then_name; if (!exec && else_name != NULL) { exec = true; name = else_name; } if (exec) { BcVec *v; v = xc_program_search(name, BC_TYPE_VAR); n = bc_vec_top(v); } free(then_name); free(else_name); if (!exec) goto exit; if (!BC_PROG_STR(n)) { s = bc_error_variable_is_wrong_type(); goto exit; } sidx = n->rdx; } else { if (r->t == XC_RESULT_STR) { sidx = r->d.id.idx; } else if (r->t == XC_RESULT_VAR) { BcNum *n; s = zxc_program_num(r, &n); if (s || !BC_PROG_STR(n)) goto exit; sidx = n->rdx; } else goto exit_nopop; } fidx = sidx + BC_PROG_REQ_FUNCS; f = xc_program_func(fidx); if (f->code.len == 0) { BcParse sv_parse; char *str; sv_parse = G.prs; // struct copy xc_parse_create(fidx); str = *xc_program_str(sidx); s = zxc_parse_text_init(str); if (s) goto err; s = zdc_parse_exprs_until_eof(); if (s) goto err; xc_parse_push(DC_INST_POP_EXEC); if (G.prs.lex != XC_LEX_EOF) s = bc_error_bad_expression(); xc_parse_free(); G.prs = sv_parse; // struct copy if (s) { err: bc_vec_pop_all(&f->code); goto exit; } } ip.inst_idx = 0; ip.func = fidx; bc_vec_pop(&G.prog.results); bc_vec_push(&G.prog.exestack, &ip); RETURN_STATUS(BC_STATUS_SUCCESS); exit: bc_vec_pop(&G.prog.results); exit_nopop: RETURN_STATUS(s); } #define zdc_program_execStr(...) (zdc_program_execStr(__VA_ARGS__) COMMA_SUCCESS) #endif // ENABLE_DC static void xc_program_pushGlobal(char inst) { BcResult res; unsigned long val; res.t = inst - XC_INST_IBASE + XC_RESULT_IBASE; if (inst == XC_INST_IBASE) val = (unsigned long) G.prog.ib_t; else if (inst == XC_INST_SCALE) val = (unsigned long) G.prog.scale; else val = (unsigned long) G.prog.ob_t; bc_num_init_DEF_SIZE(&res.d.n); bc_num_ulong2num(&res.d.n, val); bc_vec_push(&G.prog.results, &res); } static BC_STATUS zxc_program_exec(void) { BcResult r, *ptr; BcInstPtr *ip = bc_vec_top(&G.prog.exestack); BcFunc *func = xc_program_func(ip->func); char *code = func->code.v; dbg_exec("func:%zd bytes:%zd ip:%zd results.len:%d", ip->func, func->code.len, ip->inst_idx, G.prog.results.len); while (ip->inst_idx < func->code.len) { BcStatus s = BC_STATUS_SUCCESS; char inst = code[ip->inst_idx++]; dbg_exec("inst at %zd:%d results.len:%d", ip->inst_idx - 1, inst, G.prog.results.len); switch (inst) { case XC_INST_RET: if (IS_DC) { // end of '?' reached bc_vec_pop(&G.prog.exestack); goto read_updated_ip; } // bc: fall through #if ENABLE_BC case BC_INST_RET0: dbg_exec("BC_INST_RET[0]:"); s = zbc_program_return(inst); goto read_updated_ip; case BC_INST_JUMP_ZERO: { BcNum *num; bool zero; dbg_exec("BC_INST_JUMP_ZERO:"); s = zxc_program_prep(&ptr, &num); if (s) RETURN_STATUS(s); zero = (bc_num_cmp(num, &G.prog.zero) == 0); bc_vec_pop(&G.prog.results); if (!zero) { xc_program_index(code, &ip->inst_idx); break; } // else: fall through } case BC_INST_JUMP: { size_t idx = xc_program_index(code, &ip->inst_idx); size_t *addr = bc_vec_item(&func->labels, idx); dbg_exec("BC_INST_JUMP: to %ld", (long)*addr); ip->inst_idx = *addr; break; } case BC_INST_CALL: dbg_exec("BC_INST_CALL:"); s = zbc_program_call(code, &ip->inst_idx); goto read_updated_ip; case BC_INST_INC_PRE: case BC_INST_DEC_PRE: case BC_INST_INC_POST: case BC_INST_DEC_POST: dbg_exec("BC_INST_INCDEC:"); s = zbc_program_incdec(inst); break; case BC_INST_HALT: dbg_exec("BC_INST_HALT:"); QUIT_OR_RETURN_TO_MAIN; break; case XC_INST_BOOL_OR: case XC_INST_BOOL_AND: #endif // ENABLE_BC case XC_INST_REL_EQ: case XC_INST_REL_LE: case XC_INST_REL_GE: case XC_INST_REL_NE: case XC_INST_REL_LT: case XC_INST_REL_GT: dbg_exec("BC_INST_BOOL:"); s = zxc_program_logical(inst); break; case XC_INST_READ: dbg_exec("XC_INST_READ:"); s = zxc_program_read(); goto read_updated_ip; case XC_INST_VAR: dbg_exec("XC_INST_VAR:"); s = zxc_program_pushVar(code, &ip->inst_idx, false, false); break; case XC_INST_ARRAY_ELEM: case XC_INST_ARRAY: dbg_exec("XC_INST_ARRAY[_ELEM]:"); s = zbc_program_pushArray(code, &ip->inst_idx, inst); break; #if ENABLE_BC case BC_INST_LAST: dbg_exec("BC_INST_LAST:"); r.t = BC_RESULT_LAST; bc_vec_push(&G.prog.results, &r); break; #endif case XC_INST_IBASE: case XC_INST_OBASE: case XC_INST_SCALE: dbg_exec("XC_INST_internalvar(%d):", inst - XC_INST_IBASE); xc_program_pushGlobal(inst); break; case XC_INST_SCALE_FUNC: case XC_INST_LENGTH: case XC_INST_SQRT: dbg_exec("BC_INST_builtin:"); s = zxc_program_builtin(inst); break; case XC_INST_NUM: dbg_exec("XC_INST_NUM:"); r.t = XC_RESULT_CONSTANT; r.d.id.idx = xc_program_index(code, &ip->inst_idx); bc_vec_push(&G.prog.results, &r); break; case XC_INST_POP: dbg_exec("XC_INST_POP:"); if (!STACK_HAS_MORE_THAN(&G.prog.results, 0)) s = bc_error_stack_has_too_few_elements(); else bc_vec_pop(&G.prog.results); break; case XC_INST_PRINT: case XC_INST_PRINT_POP: case XC_INST_PRINT_STR: dbg_exec("XC_INST_PRINTxyz(%d):", inst - XC_INST_PRINT); s = zxc_program_print(inst, 0); break; case XC_INST_STR: dbg_exec("XC_INST_STR:"); r.t = XC_RESULT_STR; r.d.id.idx = xc_program_index(code, &ip->inst_idx); bc_vec_push(&G.prog.results, &r); break; case XC_INST_POWER: case XC_INST_MULTIPLY: case XC_INST_DIVIDE: case XC_INST_MODULUS: case XC_INST_PLUS: case XC_INST_MINUS: dbg_exec("BC_INST_binaryop:"); s = zxc_program_op(inst); break; case XC_INST_BOOL_NOT: { BcNum *num; dbg_exec("XC_INST_BOOL_NOT:"); s = zxc_program_prep(&ptr, &num); if (s) RETURN_STATUS(s); bc_num_init_DEF_SIZE(&r.d.n); if (bc_num_cmp(num, &G.prog.zero) == 0) bc_num_one(&r.d.n); //else bc_num_zero(&r.d.n); - already is xc_program_retire(&r, XC_RESULT_TEMP); break; } case XC_INST_NEG: dbg_exec("XC_INST_NEG:"); s = zxc_program_negate(); break; #if ENABLE_BC case BC_INST_ASSIGN_POWER: case BC_INST_ASSIGN_MULTIPLY: case BC_INST_ASSIGN_DIVIDE: case BC_INST_ASSIGN_MODULUS: case BC_INST_ASSIGN_PLUS: case BC_INST_ASSIGN_MINUS: #endif case XC_INST_ASSIGN: dbg_exec("BC_INST_ASSIGNxyz:"); s = zxc_program_assign(inst); break; #if ENABLE_DC case DC_INST_POP_EXEC: dbg_exec("DC_INST_POP_EXEC:"); bc_vec_pop(&G.prog.exestack); goto read_updated_ip; case DC_INST_MODEXP: dbg_exec("DC_INST_MODEXP:"); s = zdc_program_modexp(); break; case DC_INST_DIVMOD: dbg_exec("DC_INST_DIVMOD:"); s = zdc_program_divmod(); break; case DC_INST_EXECUTE: case DC_INST_EXEC_COND: dbg_exec("DC_INST_EXEC[_COND]:"); s = zdc_program_execStr(code, &ip->inst_idx, inst == DC_INST_EXEC_COND); goto read_updated_ip; case DC_INST_PRINT_STACK: { size_t idx; dbg_exec("DC_INST_PRINT_STACK:"); for (idx = 0; idx < G.prog.results.len; ++idx) { s = zxc_program_print(XC_INST_PRINT, idx); if (s) break; } break; } case DC_INST_CLEAR_STACK: dbg_exec("DC_INST_CLEAR_STACK:"); bc_vec_pop_all(&G.prog.results); break; case DC_INST_STACK_LEN: dbg_exec("DC_INST_STACK_LEN:"); dc_program_stackLen(); break; case DC_INST_DUPLICATE: dbg_exec("DC_INST_DUPLICATE:"); if (!STACK_HAS_MORE_THAN(&G.prog.results, 0)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); ptr = bc_vec_top(&G.prog.results); dc_result_copy(&r, ptr); bc_vec_push(&G.prog.results, &r); break; case DC_INST_SWAP: { BcResult *ptr2; dbg_exec("DC_INST_SWAP:"); if (!STACK_HAS_MORE_THAN(&G.prog.results, 1)) RETURN_STATUS(bc_error_stack_has_too_few_elements()); ptr = bc_vec_item_rev(&G.prog.results, 0); ptr2 = bc_vec_item_rev(&G.prog.results, 1); memcpy(&r, ptr, sizeof(BcResult)); memcpy(ptr, ptr2, sizeof(BcResult)); memcpy(ptr2, &r, sizeof(BcResult)); break; } case DC_INST_ASCIIFY: dbg_exec("DC_INST_ASCIIFY:"); s = zdc_program_asciify(); break; case DC_INST_PRINT_STREAM: dbg_exec("DC_INST_PRINT_STREAM:"); s = zdc_program_printStream(); break; case DC_INST_LOAD: case DC_INST_PUSH_VAR: { bool copy = inst == DC_INST_LOAD; s = zxc_program_pushVar(code, &ip->inst_idx, true, copy); break; } case DC_INST_PUSH_TO_VAR: { char *name = xc_program_name(code, &ip->inst_idx); s = zxc_program_popResultAndCopyToVar(name, BC_TYPE_VAR); free(name); break; } case DC_INST_QUIT: dbg_exec("DC_INST_QUIT:"); if (G.prog.exestack.len <= 2) QUIT_OR_RETURN_TO_MAIN; bc_vec_npop(&G.prog.exestack, 2); goto read_updated_ip; case DC_INST_NQUIT: dbg_exec("DC_INST_NQUIT:"); s = zdc_program_nquit(); //goto read_updated_ip; - just fall through to it #endif // ENABLE_DC read_updated_ip: // Instruction stack has changed, read new pointers ip = bc_vec_top(&G.prog.exestack); func = xc_program_func(ip->func); code = func->code.v; dbg_exec("func:%zd bytes:%zd ip:%zd", ip->func, func->code.len, ip->inst_idx); } if (s || G_interrupt) { xc_program_reset(); RETURN_STATUS(s); } fflush_and_check(); } RETURN_STATUS(BC_STATUS_SUCCESS); } #define zxc_program_exec(...) (zxc_program_exec(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_vm_process(const char *text) { BcStatus s; dbg_lex_enter("%s:%d entered", __func__, __LINE__); s = zxc_parse_text_init(text); // does the first zxc_lex_next() if (s) RETURN_STATUS(s); while (G.prs.lex != XC_LEX_EOF) { BcInstPtr *ip; BcFunc *f; dbg_lex("%s:%d G.prs.lex:%d, parsing...", __func__, __LINE__, G.prs.lex); if (IS_BC) { #if ENABLE_BC s = zbc_parse_stmt_or_funcdef(); if (s) goto err; // Check that next token is a correct stmt delimiter - // disallows "print 1 print 2" and such. if (G.prs.lex != BC_LEX_SCOLON && G.prs.lex != XC_LEX_NLINE && G.prs.lex != XC_LEX_EOF ) { bc_error_at("bad statement terminator"); goto err; } // The above logic is fragile. Check these examples: // - interactive read() still works #endif } else { #if ENABLE_DC s = zdc_parse_expr(); #endif } if (s || G_interrupt) { err: xc_parse_reset(); // includes xc_program_reset() RETURN_STATUS(BC_STATUS_FAILURE); } dbg_lex("%s:%d executing...", __func__, __LINE__); s = zxc_program_exec(); if (s) { xc_program_reset(); break; } ip = (void*)G.prog.exestack.v; #if SANITY_CHECKS if (G.prog.exestack.len != 1) // should have only main's IP bb_simple_error_msg_and_die("BUG:call stack"); if (ip->func != BC_PROG_MAIN) bb_simple_error_msg_and_die("BUG:not MAIN"); #endif f = xc_program_func_BC_PROG_MAIN(); // bc discards strings, constants and code after each // top-level statement in the "main program". // This prevents "yes 1 | bc" from growing its memory // without bound. This can be done because data stack // is empty and thus can't hold any references to // strings or constants, there is no generated code // which can hold references (after we discard one // we just executed). Code of functions can have references, // but bc stores function strings/constants in per-function // storage. if (IS_BC) { #if SANITY_CHECKS if (G.prog.results.len != 0) // should be empty bb_simple_error_msg_and_die("BUG:data stack"); #endif IF_BC(bc_vec_pop_all(&f->strs);) IF_BC(bc_vec_pop_all(&f->consts);) // We are at SCOLON/NLINE, skip it: s = zxc_lex_next(); if (s) goto err; } else { if (G.prog.results.len == 0 && G.prog.vars.len == 0 ) { // If stack is empty and no registers exist (TODO: or they are all empty), // we can get rid of accumulated strings and constants. // In this example dc process should not grow // its memory consumption with time: // yes 1pc | dc IF_DC(bc_vec_pop_all(&G.prog.strs);) IF_DC(bc_vec_pop_all(&G.prog.consts);) } // The code is discarded always (below), thus this example // should also not grow its memory consumption with time, // even though its data stack is not empty: // { echo 1; yes dk; } | dc } // We drop generated and executed code for both bc and dc: bc_vec_pop_all(&f->code); ip->inst_idx = 0; } dbg_lex_done("%s:%d done", __func__, __LINE__); RETURN_STATUS(s); } #define zxc_vm_process(...) (zxc_vm_process(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_vm_execute_FILE(FILE *fp, const char *filename) { // So far bc/dc have no way to include a file from another file, // therefore we know G.prs.lex_filename == NULL on entry //const char *sv_file; BcStatus s; G.prs.lex_filename = filename; G.prs.lex_input_fp = fp; G.err_line = G.prs.lex_line = 1; dbg_lex("p->lex_line reset to 1"); do { s = zxc_vm_process(""); // We do not stop looping on errors here if reading stdin. // Example: start interactive bc and enter "return". // It should say "'return' not in a function" // but should not exit. } while (G.prs.lex_input_fp == stdin); G.prs.lex_filename = NULL; RETURN_STATUS(s); } #define zxc_vm_execute_FILE(...) (zxc_vm_execute_FILE(__VA_ARGS__) COMMA_SUCCESS) static BC_STATUS zxc_vm_file(const char *file) { BcStatus s; FILE *fp; fp = xfopen_for_read(file); s = zxc_vm_execute_FILE(fp, file); fclose(fp); RETURN_STATUS(s); } #define zxc_vm_file(...) (zxc_vm_file(__VA_ARGS__) COMMA_SUCCESS) #if ENABLE_BC static void bc_vm_info(void) { printf("%s "BB_VER"\n" "Adapted from https://github.com/gavinhoward/bc\n" "Original code (c) 2018 Gavin D. Howard and contributors\n" , applet_name); } static void bc_args(char **argv) { unsigned opts; int i; GETOPT_RESET(); #if ENABLE_FEATURE_BC_LONG_OPTIONS opts = option_mask32 |= getopt32long(argv, "wvsqli", "warn\0" No_argument "w" "version\0" No_argument "v" "standard\0" No_argument "s" "quiet\0" No_argument "q" "mathlib\0" No_argument "l" "interactive\0" No_argument "i" ); #else opts = option_mask32 |= getopt32(argv, "wvsqli"); #endif if (getenv("POSIXLY_CORRECT")) option_mask32 |= BC_FLAG_S; if (opts & BC_FLAG_V) { bc_vm_info(); exit(0); } for (i = optind; argv[i]; ++i) bc_vec_push(&G.files, argv + i); } static void bc_vm_envArgs(void) { BcVec v; char *buf; char *env_args = getenv("BC_ENV_ARGS"); if (!env_args) return; G.env_args = xstrdup(env_args); buf = G.env_args; bc_vec_init(&v, sizeof(char *), NULL); while (*(buf = skip_whitespace(buf)) != '\0') { bc_vec_push(&v, &buf); buf = skip_non_whitespace(buf); if (!*buf) break; *buf++ = '\0'; } // NULL terminate, and pass argv[] so that first arg is argv[1] if (sizeof(int) == sizeof(char*)) { bc_vec_push(&v, &const_int_0); } else { static char *const nullptr = NULL; bc_vec_push(&v, &nullptr); } bc_args(((char **)v.v) - 1); bc_vec_free(&v); } static const char bc_lib[] ALIGN1 = { "scale=20" "\n" "define e(x){" "\n" "auto b,s,n,r,d,i,p,f,v" ////////////////"if(x<0)return(1/e(-x))" // and drop 'n' and x<0 logic below //^^^^^^^^^^^^^^^^ this would work, and is even more precise than GNU bc: //e(-.998896): GNU:.36828580434569428695 // above code:.36828580434569428696 // actual value:.3682858043456942869594... // but for now let's be "GNU compatible" "\n" "b=ibase" "\n" "ibase=A" "\n" "if(x<0){" "\n" "n=1" "\n" "x=-x" "\n" "}" "\n" "s=scale" "\n" "r=6+s+.44*x" "\n" "scale=scale(x)+1" "\n" "while(x>1){" "\n" "d+=1" "\n" "x/=2" "\n" "scale+=1" "\n" "}" "\n" "scale=r" "\n" "r=x+1" "\n" "p=x" "\n" "f=v=1" "\n" "for(i=2;v;++i){" "\n" "p*=x" "\n" "f*=i" "\n" "v=p/f" "\n" "r+=v" "\n" "}" "\n" "while(d--)r*=r" "\n" "scale=s" "\n" "ibase=b" "\n" "if(n)return(1/r)" "\n" "return(r/1)" "\n" "}" "\n" "define l(x){" "\n" "auto b,s,r,p,a,q,i,v" "\n" "b=ibase" "\n" "ibase=A" "\n" "if(x<=0){" "\n" "r=(1-10^scale)/1" "\n" "ibase=b" "\n" "return(r)" "\n" "}" "\n" "s=scale" "\n" "scale+=6" "\n" "p=2" "\n" "while(x>=2){" "\n" "p*=2" "\n" "x=sqrt(x)" "\n" "}" "\n" "while(x<=.5){" "\n" "p*=2" "\n" "x=sqrt(x)" "\n" "}" "\n" "r=a=(x-1)/(x+1)" "\n" "q=a*a" "\n" "v=1" "\n" "for(i=3;v;i+=2){" "\n" "a*=q" "\n" "v=a/i" "\n" "r+=v" "\n" "}" "\n" "r*=p" "\n" "scale=s" "\n" "ibase=b" "\n" "return(r/1)" "\n" "}" "\n" "define s(x){" "\n" "auto b,s,r,a,q,i" "\n" "if(x<0)return(-s(-x))" "\n" "b=ibase" "\n" "ibase=A" "\n" "s=scale" "\n" "scale=1.1*s+2" "\n" "a=a(1)" "\n" "scale=0" "\n" "q=(x/a+2)/4" "\n" "x-=4*q*a" "\n" "if(q%2)x=-x" "\n" "scale=s+2" "\n" "r=a=x" "\n" "q=-x*x" "\n" "for(i=3;a;i+=2){" "\n" "a*=q/(i*(i-1))" "\n" "r+=a" "\n" "}" "\n" "scale=s" "\n" "ibase=b" "\n" "return(r/1)" "\n" "}" "\n" "define c(x){" "\n" "auto b,s" "\n" "b=ibase" "\n" "ibase=A" "\n" "s=scale" "\n" "scale*=1.2" "\n" "x=s(2*a(1)+x)" "\n" "scale=s" "\n" "ibase=b" "\n" "return(x/1)" "\n" "}" "\n" "define a(x){" "\n" "auto b,s,r,n,a,m,t,f,i,u" "\n" "b=ibase" "\n" "ibase=A" "\n" "n=1" "\n" "if(x<0){" "\n" "n=-1" "\n" "x=-x" "\n" "}" "\n" "if(scale<65){" "\n" "if(x==1)return(.7853981633974483096156608458198757210492923498437764552437361480/n)" "\n" "if(x==.2)return(.1973955598498807583700497651947902934475851037878521015176889402/n)" "\n" "}" "\n" "s=scale" "\n" "if(x>.2){" "\n" "scale+=5" "\n" "a=a(.2)" "\n" "}" "\n" "scale=s+3" "\n" "while(x>.2){" "\n" "m+=1" "\n" "x=(x-.2)/(1+.2*x)" "\n" "}" "\n" "r=u=x" "\n" "f=-x*x" "\n" "t=1" "\n" "for(i=3;t;i+=2){" "\n" "u*=f" "\n" "t=u/i" "\n" "r+=t" "\n" "}" "\n" "scale=s" "\n" "ibase=b" "\n" "return((m*a+r)/n)" "\n" "}" "\n" "define j(n,x){" "\n" "auto b,s,o,a,i,v,f" "\n" "b=ibase" "\n" "ibase=A" "\n" "s=scale" "\n" "scale=0" "\n" "n/=1" "\n" "if(n<0){" "\n" "n=-n" "\n" "o=n%2" "\n" "}" "\n" "a=1" "\n" "for(i=2;i<=n;++i)a*=i" "\n" "scale=1.5*s" "\n" "a=(x^n)/2^n/a" "\n" "r=v=1" "\n" "f=-x*x/4" "\n" "scale+=length(a)-scale(a)" "\n" "for(i=1;v;++i){" "\n" "v=v*f/i/(n+i)" "\n" "r+=v" "\n" "}" "\n" "scale=s" "\n" "ibase=b" "\n" "if(o)a=-a" "\n" "return(a*r/1)" "\n" "}" }; #endif // ENABLE_BC static BC_STATUS zxc_vm_exec(void) { char **fname; BcStatus s; size_t i; #if ENABLE_BC if (option_mask32 & BC_FLAG_L) { // We know that internal library is not buggy, // thus error checking is normally disabled. # define DEBUG_LIB 0 s = zxc_vm_process(bc_lib); if (DEBUG_LIB && s) RETURN_STATUS(s); } #endif s = BC_STATUS_SUCCESS; fname = (void*)G.files.v; for (i = 0; i < G.files.len; i++) { s = zxc_vm_file(*fname++); if (ENABLE_FEATURE_CLEAN_UP && !G_ttyin && s) { // Debug config, non-interactive mode: // return all the way back to main. // Non-debug builds do not come here // in non-interactive mode, they exit. RETURN_STATUS(s); } } if (IS_BC || (option_mask32 & BC_FLAG_I)) s = zxc_vm_execute_FILE(stdin, /*filename:*/ NULL); RETURN_STATUS(s); } #define zxc_vm_exec(...) (zxc_vm_exec(__VA_ARGS__) COMMA_SUCCESS) #if ENABLE_FEATURE_CLEAN_UP static void xc_program_free(void) { bc_vec_free(&G.prog.fns); IF_BC(bc_vec_free(&G.prog.fn_map);) bc_vec_free(&G.prog.vars); bc_vec_free(&G.prog.var_map); bc_vec_free(&G.prog.arrs); bc_vec_free(&G.prog.arr_map); IF_DC(bc_vec_free(&G.prog.strs);) IF_DC(bc_vec_free(&G.prog.consts);) bc_vec_free(&G.prog.results); bc_vec_free(&G.prog.exestack); IF_BC(bc_num_free(&G.prog.last);) //IF_BC(bc_num_free(&G.prog.zero);) IF_BC(bc_num_free(&G.prog.one);) bc_vec_free(&G.input_buffer); } #endif static void xc_program_init(void) { BcInstPtr ip; // memset(&G.prog, 0, sizeof(G.prog)); - already is memset(&ip, 0, sizeof(BcInstPtr)); // G.prog.nchars = G.prog.scale = 0; - already is G.prog.ib_t = 10; G.prog.ob_t = 10; IF_BC(bc_num_init_DEF_SIZE(&G.prog.last);) //IF_BC(bc_num_zero(&G.prog.last);) - already is //bc_num_init_DEF_SIZE(&G.prog.zero); - not needed //bc_num_zero(&G.prog.zero); - already is IF_BC(bc_num_init_DEF_SIZE(&G.prog.one);) IF_BC(bc_num_one(&G.prog.one);) bc_vec_init(&G.prog.fns, sizeof(BcFunc), bc_func_free); IF_BC(bc_vec_init(&G.prog.fn_map, sizeof(BcId), bc_id_free);) if (IS_BC) { // Names are chosen simply to be distinct and never match // a valid function name (and be short) IF_BC(bc_program_addFunc(xstrdup(""))); // func #0: main IF_BC(bc_program_addFunc(xstrdup("1"))); // func #1: for read() } else { // in dc, functions have no names xc_program_add_fn(); xc_program_add_fn(); } bc_vec_init(&G.prog.vars, sizeof(BcVec), bc_vec_free); bc_vec_init(&G.prog.var_map, sizeof(BcId), bc_id_free); bc_vec_init(&G.prog.arrs, sizeof(BcVec), bc_vec_free); bc_vec_init(&G.prog.arr_map, sizeof(BcId), bc_id_free); IF_DC(bc_vec_init(&G.prog.strs, sizeof(char *), bc_string_free);) IF_DC(bc_vec_init(&G.prog.consts, sizeof(char *), bc_string_free);) bc_vec_init(&G.prog.results, sizeof(BcResult), bc_result_free); bc_vec_init(&G.prog.exestack, sizeof(BcInstPtr), NULL); bc_vec_push(&G.prog.exestack, &ip); bc_char_vec_init(&G.input_buffer); } static unsigned xc_vm_envLen(const char *var) { char *lenv; unsigned len; lenv = getenv(var); len = BC_NUM_PRINT_WIDTH; if (lenv) { len = bb_strtou(lenv, NULL, 10); if (len == 0 || len > INT_MAX) len = INT_MAX; if (errno) len = BC_NUM_PRINT_WIDTH; } // dc (GNU bc 1.07.1) 1.4.1 seems to use width // 1 char wider than bc from the same package. // Both default width, and xC_LINE_LENGTH=N are wider: // "DC_LINE_LENGTH=5 dc -e'123456 p'" prints: // |1234\ | // |56 | // "echo '123456' | BC_LINE_LENGTH=5 bc" prints: // |123\ | // |456 | // Do the same, but it might be a bug in GNU package if (IS_BC) len--; if (len < 2) len = IS_BC ? BC_NUM_PRINT_WIDTH - 1 : BC_NUM_PRINT_WIDTH; return len; } static int xc_vm_init(const char *env_len) { G.prog.len = xc_vm_envLen(env_len); bc_vec_init(&G.files, sizeof(char *), NULL); xc_program_init(); IF_BC(if (IS_BC) bc_vm_envArgs();) xc_parse_create(BC_PROG_MAIN); //TODO: in GNU bc, the check is (isatty(0) && isatty(1)), //-i option unconditionally enables this regardless of isatty(): if (isatty(0)) { #if ENABLE_FEATURE_BC_INTERACTIVE G_ttyin = 1; // With SA_RESTART, most system calls will restart // (IOW: they won't fail with EINTR). // In particular, this means ^C won't cause // stdout to get into "error state" if SIGINT hits // within write() syscall. // // The downside is that ^C while tty input is taken // will only be handled after [Enter] since read() // from stdin is not interrupted by ^C either, // it restarts, thus fgetc() does not return on ^C. // (This problem manifests only if line editing is disabled) signal_SA_RESTART_empty_mask(SIGINT, record_signo); // Without SA_RESTART, this exhibits a bug: // "while (1) print 1" and try ^C-ing it. // Intermittently, instead of returning to input line, // you'll get "output error: Interrupted system call" // and exit. //signal_no_SA_RESTART_empty_mask(SIGINT, record_signo); #endif return 1; // "tty" } return 0; // "not a tty" } static BcStatus xc_vm_run(void) { BcStatus st = zxc_vm_exec(); #if ENABLE_FEATURE_CLEAN_UP if (G_exiting) // it was actually "halt" or "quit" st = EXIT_SUCCESS; bc_vec_free(&G.files); xc_program_free(); xc_parse_free(); free(G.env_args); # if ENABLE_FEATURE_EDITING free_line_input_t(G.line_input_state); # endif FREE_G(); #endif dbg_exec("exiting with exitcode %d", st); return st; } #if ENABLE_BC int bc_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE; int bc_main(int argc UNUSED_PARAM, char **argv) { int is_tty; INIT_G(); is_tty = xc_vm_init("BC_LINE_LENGTH"); bc_args(argv); if (is_tty && !(option_mask32 & BC_FLAG_Q)) bc_vm_info(); return xc_vm_run(); } #endif #if ENABLE_DC int dc_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE; int dc_main(int argc UNUSED_PARAM, char **argv) { int noscript; INIT_G(); xc_vm_init("DC_LINE_LENGTH"); // Run -e'SCRIPT' and -fFILE in order of appearance, then handle FILEs noscript = BC_FLAG_I; for (;;) { int n = getopt(argc, argv, "e:f:x"); if (n <= 0) break; switch (n) { case 'e': noscript = 0; n = zxc_vm_process(optarg); if (n) return n; break; case 'f': noscript = 0; n = zxc_vm_file(optarg); if (n) return n; break; case 'x': option_mask32 |= DC_FLAG_X; break; default: bb_show_usage(); } } argv += optind; while (*argv) { noscript = 0; bc_vec_push(&G.files, argv++); } option_mask32 |= noscript; // set BC_FLAG_I if we need to interpret stdin return xc_vm_run(); } #endif #endif // DC_BIG