/* * This is an implementation of wcwidth() and wcswidth() (defined in * IEEE Std 1002.1-2001) for Unicode. * * http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html * http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html * * In fixed-width output devices, Latin characters all occupy a single * "cell" position of equal width, whereas ideographic CJK characters * occupy two such cells. Interoperability between terminal-line * applications and (teletype-style) character terminals using the * UTF-8 encoding requires agreement on which character should advance * the cursor by how many cell positions. No established formal * standards exist at present on which Unicode character shall occupy * how many cell positions on character terminals. These routines are * a first attempt of defining such behavior based on simple rules * applied to data provided by the Unicode Consortium. * * For some graphical characters, the Unicode standard explicitly * defines a character-cell width via the definition of the East Asian * FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes. * In all these cases, there is no ambiguity about which width a * terminal shall use. For characters in the East Asian Ambiguous (A) * class, the width choice depends purely on a preference of backward * compatibility with either historic CJK or Western practice. * Choosing single-width for these characters is easy to justify as * the appropriate long-term solution, as the CJK practice of * displaying these characters as double-width comes from historic * implementation simplicity (8-bit encoded characters were displayed * single-width and 16-bit ones double-width, even for Greek, * Cyrillic, etc.) and not any typographic considerations. * * Much less clear is the choice of width for the Not East Asian * (Neutral) class. Existing practice does not dictate a width for any * of these characters. It would nevertheless make sense * typographically to allocate two character cells to characters such * as for instance EM SPACE or VOLUME INTEGRAL, which cannot be * represented adequately with a single-width glyph. The following * routines at present merely assign a single-cell width to all * neutral characters, in the interest of simplicity. This is not * entirely satisfactory and should be reconsidered before * establishing a formal standard in this area. At the moment, the * decision which Not East Asian (Neutral) characters should be * represented by double-width glyphs cannot yet be answered by * applying a simple rule from the Unicode database content. Setting * up a proper standard for the behavior of UTF-8 character terminals * will require a careful analysis not only of each Unicode character, * but also of each presentation form, something the author of these * routines has avoided to do so far. * * http://www.unicode.org/unicode/reports/tr11/ * * Markus Kuhn -- 2007-05-26 (Unicode 5.0) * * Permission to use, copy, modify, and distribute this software * for any purpose and without fee is hereby granted. The author * disclaims all warranties with regard to this software. * * Latest version: http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c */ /* Assigned Unicode character ranges: * Plane Range * 0 0000–FFFF Basic Multilingual Plane * 1 10000–1FFFF Supplementary Multilingual Plane * 2 20000–2FFFF Supplementary Ideographic Plane * 3 30000-3FFFF Tertiary Ideographic Plane (no chars assigned yet) * 4-13 40000–DFFFF currently unassigned * 14 E0000–EFFFF Supplementary Special-purpose Plane * 15 F0000–FFFFF Supplementary Private Use Area-A * 16 100000–10FFFF Supplementary Private Use Area-B * * "Supplementary Special-purpose Plane currently contains non-graphical * characters in two blocks of 128 and 240 characters. The first block * is for language tag characters for use when language cannot be indicated * through other protocols (such as the xml:lang attribute in XML). * The other block contains glyph variation selectors to indicate * an alternate glyph for a character that cannot be determined by context." * * In simpler terms: it is a tool to fix the "Han unification" mess * created by Unicode committee, to select Chinese/Japanese/Korean/Taiwan * version of a character. (They forgot that the whole purpose of the Unicode * was to be able to write all chars in one charset without such tricks). * Until East Asian users say it is actually necessary to support these * code points in console applications like busybox * (i.e. do these chars ever appear in filenames, hostnames, text files * and such?), we are treating these code points as invalid. * * Tertiary Ideographic Plane is also ignored for now, * until Unicode committee assigns something there. */ #if LAST_SUPPORTED_WCHAR >= 0x300 struct interval { uint16_t first; uint16_t last; }; /* auxiliary function for binary search in interval table */ static int in_interval_table(unsigned ucs, const struct interval *table, unsigned max) { unsigned min; unsigned mid; if (ucs < table[0].first || ucs > table[max].last) return 0; min = 0; while (max >= min) { mid = (min + max) / 2; if (ucs > table[mid].last) min = mid + 1; else if (ucs < table[mid].first) max = mid - 1; else return 1; } return 0; } static int in_uint16_table(unsigned ucs, const uint16_t *table, unsigned max) { unsigned min; unsigned mid; unsigned first, last; first = table[0] >> 2; last = first + (table[0] & 3); if (ucs < first || ucs > last) return 0; min = 0; while (max >= min) { mid = (min + max) / 2; first = table[mid] >> 2; last = first + (table[mid] & 3); if (ucs > last) min = mid + 1; else if (ucs < first) max = mid - 1; else return 1; } return 0; } #endif /* The following two functions define the column width of an ISO 10646 * character as follows: * * - The null character (U+0000) has a column width of 0. * * - Other C0/C1 control characters and DEL will lead to a return * value of -1. * * - Non-spacing and enclosing combining characters (general * category code Mn or Me in the Unicode database) have a * column width of 0. * * - SOFT HYPHEN (U+00AD) has a column width of 1. * * - Other format characters (general category code Cf in the Unicode * database) and ZERO WIDTH SPACE (U+200B) have a column width of 0. * * - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF) * have a column width of 0. * * - Spacing characters in the East Asian Wide (W) or East Asian * Full-width (F) category as defined in Unicode Technical * Report #11 have a column width of 2. * * - All remaining characters (including all printable * ISO 8859-1 and WGL4 characters, Unicode control characters, * etc.) have a column width of 1. * * This implementation assumes that wchar_t characters are encoded * in ISO 10646. */ static int wcwidth(unsigned ucs) { #if LAST_SUPPORTED_WCHAR >= 0x300 /* sorted list of non-overlapping intervals of non-spacing characters */ /* generated by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */ static const struct interval combining[] = { #define BIG_(a,b) { a, b }, #define PAIR(a,b) /* PAIR if < 0x4000 and no more than 4 chars big */ BIG_(0x0300, 0x036F) PAIR(0x0483, 0x0486) PAIR(0x0488, 0x0489) BIG_(0x0591, 0x05BD) PAIR(0x05BF, 0x05BF) PAIR(0x05C1, 0x05C2) PAIR(0x05C4, 0x05C5) PAIR(0x05C7, 0x05C7) PAIR(0x0600, 0x0603) BIG_(0x0610, 0x0615) BIG_(0x064B, 0x065E) PAIR(0x0670, 0x0670) BIG_(0x06D6, 0x06E4) PAIR(0x06E7, 0x06E8) PAIR(0x06EA, 0x06ED) PAIR(0x070F, 0x070F) PAIR(0x0711, 0x0711) BIG_(0x0730, 0x074A) BIG_(0x07A6, 0x07B0) BIG_(0x07EB, 0x07F3) PAIR(0x0901, 0x0902) PAIR(0x093C, 0x093C) BIG_(0x0941, 0x0948) PAIR(0x094D, 0x094D) PAIR(0x0951, 0x0954) PAIR(0x0962, 0x0963) PAIR(0x0981, 0x0981) PAIR(0x09BC, 0x09BC) PAIR(0x09C1, 0x09C4) PAIR(0x09CD, 0x09CD) PAIR(0x09E2, 0x09E3) PAIR(0x0A01, 0x0A02) PAIR(0x0A3C, 0x0A3C) PAIR(0x0A41, 0x0A42) PAIR(0x0A47, 0x0A48) PAIR(0x0A4B, 0x0A4D) PAIR(0x0A70, 0x0A71) PAIR(0x0A81, 0x0A82) PAIR(0x0ABC, 0x0ABC) BIG_(0x0AC1, 0x0AC5) PAIR(0x0AC7, 0x0AC8) PAIR(0x0ACD, 0x0ACD) PAIR(0x0AE2, 0x0AE3) PAIR(0x0B01, 0x0B01) PAIR(0x0B3C, 0x0B3C) PAIR(0x0B3F, 0x0B3F) PAIR(0x0B41, 0x0B43) PAIR(0x0B4D, 0x0B4D) PAIR(0x0B56, 0x0B56) PAIR(0x0B82, 0x0B82) PAIR(0x0BC0, 0x0BC0) PAIR(0x0BCD, 0x0BCD) PAIR(0x0C3E, 0x0C40) PAIR(0x0C46, 0x0C48) PAIR(0x0C4A, 0x0C4D) PAIR(0x0C55, 0x0C56) PAIR(0x0CBC, 0x0CBC) PAIR(0x0CBF, 0x0CBF) PAIR(0x0CC6, 0x0CC6) PAIR(0x0CCC, 0x0CCD) PAIR(0x0CE2, 0x0CE3) PAIR(0x0D41, 0x0D43) PAIR(0x0D4D, 0x0D4D) PAIR(0x0DCA, 0x0DCA) PAIR(0x0DD2, 0x0DD4) PAIR(0x0DD6, 0x0DD6) PAIR(0x0E31, 0x0E31) BIG_(0x0E34, 0x0E3A) BIG_(0x0E47, 0x0E4E) PAIR(0x0EB1, 0x0EB1) BIG_(0x0EB4, 0x0EB9) PAIR(0x0EBB, 0x0EBC) BIG_(0x0EC8, 0x0ECD) PAIR(0x0F18, 0x0F19) PAIR(0x0F35, 0x0F35) PAIR(0x0F37, 0x0F37) PAIR(0x0F39, 0x0F39) BIG_(0x0F71, 0x0F7E) BIG_(0x0F80, 0x0F84) PAIR(0x0F86, 0x0F87) PAIR(0x0FC6, 0x0FC6) BIG_(0x0F90, 0x0F97) BIG_(0x0F99, 0x0FBC) PAIR(0x102D, 0x1030) PAIR(0x1032, 0x1032) PAIR(0x1036, 0x1037) PAIR(0x1039, 0x1039) PAIR(0x1058, 0x1059) BIG_(0x1160, 0x11FF) PAIR(0x135F, 0x135F) PAIR(0x1712, 0x1714) PAIR(0x1732, 0x1734) PAIR(0x1752, 0x1753) PAIR(0x1772, 0x1773) PAIR(0x17B4, 0x17B5) BIG_(0x17B7, 0x17BD) PAIR(0x17C6, 0x17C6) BIG_(0x17C9, 0x17D3) PAIR(0x17DD, 0x17DD) PAIR(0x180B, 0x180D) PAIR(0x18A9, 0x18A9) PAIR(0x1920, 0x1922) PAIR(0x1927, 0x1928) PAIR(0x1932, 0x1932) PAIR(0x1939, 0x193B) PAIR(0x1A17, 0x1A18) PAIR(0x1B00, 0x1B03) PAIR(0x1B34, 0x1B34) BIG_(0x1B36, 0x1B3A) PAIR(0x1B3C, 0x1B3C) PAIR(0x1B42, 0x1B42) BIG_(0x1B6B, 0x1B73) BIG_(0x1DC0, 0x1DCA) PAIR(0x1DFE, 0x1DFF) BIG_(0x200B, 0x200F) BIG_(0x202A, 0x202E) PAIR(0x2060, 0x2063) BIG_(0x206A, 0x206F) BIG_(0x20D0, 0x20EF) BIG_(0x302A, 0x302F) PAIR(0x3099, 0x309A) /* Too big to be packed in PAIRs: */ { 0xA806, 0xA806 }, { 0xA80B, 0xA80B }, { 0xA825, 0xA826 }, { 0xFB1E, 0xFB1E }, { 0xFE00, 0xFE0F }, { 0xFE20, 0xFE23 }, { 0xFEFF, 0xFEFF }, { 0xFFF9, 0xFFFB } #undef BIG_ #undef PAIR }; static const uint16_t combining1[] = { #define BIG_(a,b) #define PAIR(a,b) (a << 2) | (b-a), /* Exact copy-n-paste of the above: */ BIG_(0x0300, 0x036F) PAIR(0x0483, 0x0486) PAIR(0x0488, 0x0489) BIG_(0x0591, 0x05BD) PAIR(0x05BF, 0x05BF) PAIR(0x05C1, 0x05C2) PAIR(0x05C4, 0x05C5) PAIR(0x05C7, 0x05C7) PAIR(0x0600, 0x0603) BIG_(0x0610, 0x0615) BIG_(0x064B, 0x065E) PAIR(0x0670, 0x0670) BIG_(0x06D6, 0x06E4) PAIR(0x06E7, 0x06E8) PAIR(0x06EA, 0x06ED) PAIR(0x070F, 0x070F) PAIR(0x0711, 0x0711) BIG_(0x0730, 0x074A) BIG_(0x07A6, 0x07B0) BIG_(0x07EB, 0x07F3) PAIR(0x0901, 0x0902) PAIR(0x093C, 0x093C) BIG_(0x0941, 0x0948) PAIR(0x094D, 0x094D) PAIR(0x0951, 0x0954) PAIR(0x0962, 0x0963) PAIR(0x0981, 0x0981) PAIR(0x09BC, 0x09BC) PAIR(0x09C1, 0x09C4) PAIR(0x09CD, 0x09CD) PAIR(0x09E2, 0x09E3) PAIR(0x0A01, 0x0A02) PAIR(0x0A3C, 0x0A3C) PAIR(0x0A41, 0x0A42) PAIR(0x0A47, 0x0A48) PAIR(0x0A4B, 0x0A4D) PAIR(0x0A70, 0x0A71) PAIR(0x0A81, 0x0A82) PAIR(0x0ABC, 0x0ABC) BIG_(0x0AC1, 0x0AC5) PAIR(0x0AC7, 0x0AC8) PAIR(0x0ACD, 0x0ACD) PAIR(0x0AE2, 0x0AE3) PAIR(0x0B01, 0x0B01) PAIR(0x0B3C, 0x0B3C) PAIR(0x0B3F, 0x0B3F) PAIR(0x0B41, 0x0B43) PAIR(0x0B4D, 0x0B4D) PAIR(0x0B56, 0x0B56) PAIR(0x0B82, 0x0B82) PAIR(0x0BC0, 0x0BC0) PAIR(0x0BCD, 0x0BCD) PAIR(0x0C3E, 0x0C40) PAIR(0x0C46, 0x0C48) PAIR(0x0C4A, 0x0C4D) PAIR(0x0C55, 0x0C56) PAIR(0x0CBC, 0x0CBC) PAIR(0x0CBF, 0x0CBF) PAIR(0x0CC6, 0x0CC6) PAIR(0x0CCC, 0x0CCD) PAIR(0x0CE2, 0x0CE3) PAIR(0x0D41, 0x0D43) PAIR(0x0D4D, 0x0D4D) PAIR(0x0DCA, 0x0DCA) PAIR(0x0DD2, 0x0DD4) PAIR(0x0DD6, 0x0DD6) PAIR(0x0E31, 0x0E31) BIG_(0x0E34, 0x0E3A) BIG_(0x0E47, 0x0E4E) PAIR(0x0EB1, 0x0EB1) BIG_(0x0EB4, 0x0EB9) PAIR(0x0EBB, 0x0EBC) BIG_(0x0EC8, 0x0ECD) PAIR(0x0F18, 0x0F19) PAIR(0x0F35, 0x0F35) PAIR(0x0F37, 0x0F37) PAIR(0x0F39, 0x0F39) BIG_(0x0F71, 0x0F7E) BIG_(0x0F80, 0x0F84) PAIR(0x0F86, 0x0F87) PAIR(0x0FC6, 0x0FC6) BIG_(0x0F90, 0x0F97) BIG_(0x0F99, 0x0FBC) PAIR(0x102D, 0x1030) PAIR(0x1032, 0x1032) PAIR(0x1036, 0x1037) PAIR(0x1039, 0x1039) PAIR(0x1058, 0x1059) BIG_(0x1160, 0x11FF) PAIR(0x135F, 0x135F) PAIR(0x1712, 0x1714) PAIR(0x1732, 0x1734) PAIR(0x1752, 0x1753) PAIR(0x1772, 0x1773) PAIR(0x17B4, 0x17B5) BIG_(0x17B7, 0x17BD) PAIR(0x17C6, 0x17C6) BIG_(0x17C9, 0x17D3) PAIR(0x17DD, 0x17DD) PAIR(0x180B, 0x180D) PAIR(0x18A9, 0x18A9) PAIR(0x1920, 0x1922) PAIR(0x1927, 0x1928) PAIR(0x1932, 0x1932) PAIR(0x1939, 0x193B) PAIR(0x1A17, 0x1A18) PAIR(0x1B00, 0x1B03) PAIR(0x1B34, 0x1B34) BIG_(0x1B36, 0x1B3A) PAIR(0x1B3C, 0x1B3C) PAIR(0x1B42, 0x1B42) BIG_(0x1B6B, 0x1B73) BIG_(0x1DC0, 0x1DCA) PAIR(0x1DFE, 0x1DFF) BIG_(0x200B, 0x200F) BIG_(0x202A, 0x202E) PAIR(0x2060, 0x2063) BIG_(0x206A, 0x206F) BIG_(0x20D0, 0x20EF) BIG_(0x302A, 0x302F) PAIR(0x3099, 0x309A) #undef BIG_ #undef PAIR }; struct CHECK { #define BIG_(a,b) char big##a[b-a <= 3 ? -1 : 1]; #define PAIR(a,b) char pair##a[b-a > 3 ? -1 : 1]; /* Copy-n-paste it here again to verify correctness */ #undef BIG_ #undef PAIR }; #endif if (ucs == 0) return 0; /* Test for 8-bit control characters (00-1f, 80-9f, 7f) */ if ((ucs & ~0x80) < 0x20 || ucs == 0x7f) return -1; /* Quick abort if it is an obviously invalid char */ if (ucs > LAST_SUPPORTED_WCHAR) return -1; /* Optimization: no combining chars below 0x300 */ if (LAST_SUPPORTED_WCHAR < 0x300 || ucs < 0x300) return 1; #if LAST_SUPPORTED_WCHAR >= 0x300 /* Binary search in table of non-spacing characters */ if (in_interval_table(ucs, combining, ARRAY_SIZE(combining) - 1)) return 0; if (in_uint16_table(ucs, combining1, ARRAY_SIZE(combining1) - 1)) return 0; /* Optimization: all chars below 0x1100 are not double-width */ if (LAST_SUPPORTED_WCHAR < 0x1100 || ucs < 0x1100) return 1; # if LAST_SUPPORTED_WCHAR >= 0x1100 /* Invalid code points: */ /* High (d800..dbff) and low (dc00..dfff) surrogates (valid only in UTF16) */ /* Private Use Area (e000..f8ff) */ /* Noncharacters fdd0..fdef */ if ((LAST_SUPPORTED_WCHAR >= 0xd800 && ucs >= 0xd800 && ucs <= 0xf8ff) || (LAST_SUPPORTED_WCHAR >= 0xfdd0 && ucs >= 0xfdd0 && ucs <= 0xfdef) ) { return -1; } /* 0xfffe and 0xffff in every plane are invalid */ if (LAST_SUPPORTED_WCHAR >= 0xfffe && ((ucs & 0xfffe) == 0xfffe)) { return -1; } # if LAST_SUPPORTED_WCHAR >= 0x10000 if (ucs >= 0x10000) { /* Combining chars in Supplementary Multilingual Plane 0x1xxxx */ static const struct interval combining0x10000[] = { { 0x0A01, 0x0A03 }, { 0x0A05, 0x0A06 }, { 0x0A0C, 0x0A0F }, { 0x0A38, 0x0A3A }, { 0x0A3F, 0x0A3F }, { 0xD167, 0xD169 }, { 0xD173, 0xD182 }, { 0xD185, 0xD18B }, { 0xD1AA, 0xD1AD }, { 0xD242, 0xD244 } }; /* Binary search in table of non-spacing characters in Supplementary Multilingual Plane */ if (in_interval_table(ucs ^ 0x10000, combining0x10000, ARRAY_SIZE(combining0x10000) - 1)) return 0; /* Check a few non-spacing chars in Supplementary Special-purpose Plane 0xExxxx */ if (LAST_SUPPORTED_WCHAR >= 0xE0001 && ( ucs == 0xE0001 || (ucs >= 0xE0020 && ucs <= 0xE007F) || (ucs >= 0xE0100 && ucs <= 0xE01EF) ) ) { return 0; } } # endif /* If we arrive here, ucs is not a combining or C0/C1 control character. * Check whether it's 1 char or 2-shar wide. */ return 1 + ( (/*ucs >= 0x1100 &&*/ ucs <= 0x115f) /* Hangul Jamo init. consonants */ || ucs == 0x2329 /* left-pointing angle bracket; also CJK punct. char */ || ucs == 0x232a /* right-pointing angle bracket; also CJK punct. char */ || (ucs >= 0x2e80 && ucs <= 0xa4cf && ucs != 0x303f) /* CJK ... Yi */ # if LAST_SUPPORTED_WCHAR >= 0xac00 || (ucs >= 0xac00 && ucs <= 0xd7a3) /* Hangul Syllables */ || (ucs >= 0xf900 && ucs <= 0xfaff) /* CJK Compatibility Ideographs */ || (ucs >= 0xfe10 && ucs <= 0xfe19) /* Vertical forms */ || (ucs >= 0xfe30 && ucs <= 0xfe6f) /* CJK Compatibility Forms */ || (ucs >= 0xff00 && ucs <= 0xff60) /* Fullwidth Forms */ || (ucs >= 0xffe0 && ucs <= 0xffe6) || ((ucs >> 17) == (2 >> 1)) /* 20000..3ffff: Supplementary and Tertiary Ideographic Planes */ # endif ); # endif /* >= 0x1100 */ #endif /* >= 0x300 */ }