/* vi: set sw=4 ts=4: */ /* * Small lzma deflate implementation. * Copyright (C) 2006 Aurelien Jacobs <aurel@gnuage.org> * * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/) * Copyright (C) 1999-2005 Igor Pavlov * * Licensed under GPLv2 or later, see file LICENSE in this tarball for details. */ #include "libbb.h" #include "unarchive.h" #if ENABLE_FEATURE_LZMA_FAST # define speed_inline ALWAYS_INLINE #else # define speed_inline #endif typedef struct { int fd; uint8_t *ptr; /* Was keeping rc on stack in unlzma and separately allocating buffer, * but with "buffer 'attached to' allocated rc" code is smaller: */ /* uint8_t *buffer; */ #define RC_BUFFER ((uint8_t*)(rc+1)) uint8_t *buffer_end; /* Had provisions for variable buffer, but we don't need it here */ /* int buffer_size; */ #define RC_BUFFER_SIZE 0x10000 uint32_t code; uint32_t range; uint32_t bound; } rc_t; #define RC_TOP_BITS 24 #define RC_MOVE_BITS 5 #define RC_MODEL_TOTAL_BITS 11 /* Called twice: once at startup and once in rc_normalize() */ static void rc_read(rc_t * rc) { int buffer_size = safe_read(rc->fd, RC_BUFFER, RC_BUFFER_SIZE); if (buffer_size <= 0) bb_error_msg_and_die("unexpected EOF"); rc->ptr = RC_BUFFER; rc->buffer_end = RC_BUFFER + buffer_size; } /* Called once */ static rc_t* rc_init(int fd) /*, int buffer_size) */ { int i; rc_t* rc; rc = xmalloc(sizeof(rc_t) + RC_BUFFER_SIZE); rc->fd = fd; /* rc->buffer_size = buffer_size; */ rc->buffer_end = RC_BUFFER + RC_BUFFER_SIZE; rc->ptr = rc->buffer_end; rc->code = 0; rc->range = 0xFFFFFFFF; for (i = 0; i < 5; i++) { if (rc->ptr >= rc->buffer_end) rc_read(rc); rc->code = (rc->code << 8) | *rc->ptr++; } return rc; } /* Called once */ static ALWAYS_INLINE void rc_free(rc_t * rc) { if (ENABLE_FEATURE_CLEAN_UP) free(rc); } /* Called twice, but one callsite is in speed_inline'd rc_is_bit_0_helper() */ static void rc_do_normalize(rc_t * rc) { if (rc->ptr >= rc->buffer_end) rc_read(rc); rc->range <<= 8; rc->code = (rc->code << 8) | *rc->ptr++; } static ALWAYS_INLINE void rc_normalize(rc_t * rc) { if (rc->range < (1 << RC_TOP_BITS)) { rc_do_normalize(rc); } } /* rc_is_bit_0 is called 9 times */ /* Why rc_is_bit_0_helper exists? * Because we want to always expose (rc->code < rc->bound) to optimizer. * Thus rc_is_bit_0 is always inlined, and rc_is_bit_0_helper is inlined * only if we compile for speed. */ static speed_inline uint32_t rc_is_bit_0_helper(rc_t * rc, uint16_t * p) { rc_normalize(rc); rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS); return rc->bound; } static ALWAYS_INLINE int rc_is_bit_0(rc_t * rc, uint16_t * p) { uint32_t t = rc_is_bit_0_helper(rc, p); return rc->code < t; } /* Called ~10 times, but very small, thus inlined */ static speed_inline void rc_update_bit_0(rc_t * rc, uint16_t * p) { rc->range = rc->bound; *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS; } static speed_inline void rc_update_bit_1(rc_t * rc, uint16_t * p) { rc->range -= rc->bound; rc->code -= rc->bound; *p -= *p >> RC_MOVE_BITS; } /* Called 4 times in unlzma loop */ static int rc_get_bit(rc_t * rc, uint16_t * p, int *symbol) { if (rc_is_bit_0(rc, p)) { rc_update_bit_0(rc, p); *symbol *= 2; return 0; } else { rc_update_bit_1(rc, p); *symbol = *symbol * 2 + 1; return 1; } } /* Called once */ static ALWAYS_INLINE int rc_direct_bit(rc_t * rc) { rc_normalize(rc); rc->range >>= 1; if (rc->code >= rc->range) { rc->code -= rc->range; return 1; } return 0; } /* Called twice */ static speed_inline void rc_bit_tree_decode(rc_t * rc, uint16_t * p, int num_levels, int *symbol) { int i = num_levels; *symbol = 1; while (i--) rc_get_bit(rc, p + *symbol, symbol); *symbol -= 1 << num_levels; } typedef struct { uint8_t pos; uint32_t dict_size; uint64_t dst_size; } __attribute__ ((packed)) lzma_header_t; /* #defines will force compiler to compute/optimize each one with each usage. * Have heart and use enum instead. */ enum { LZMA_BASE_SIZE = 1846, LZMA_LIT_SIZE = 768, LZMA_NUM_POS_BITS_MAX = 4, LZMA_LEN_NUM_LOW_BITS = 3, LZMA_LEN_NUM_MID_BITS = 3, LZMA_LEN_NUM_HIGH_BITS = 8, LZMA_LEN_CHOICE = 0, LZMA_LEN_CHOICE_2 = (LZMA_LEN_CHOICE + 1), LZMA_LEN_LOW = (LZMA_LEN_CHOICE_2 + 1), LZMA_LEN_MID = (LZMA_LEN_LOW \ + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS))), LZMA_LEN_HIGH = (LZMA_LEN_MID \ + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS))), LZMA_NUM_LEN_PROBS = (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS)), LZMA_NUM_STATES = 12, LZMA_NUM_LIT_STATES = 7, LZMA_START_POS_MODEL_INDEX = 4, LZMA_END_POS_MODEL_INDEX = 14, LZMA_NUM_FULL_DISTANCES = (1 << (LZMA_END_POS_MODEL_INDEX >> 1)), LZMA_NUM_POS_SLOT_BITS = 6, LZMA_NUM_LEN_TO_POS_STATES = 4, LZMA_NUM_ALIGN_BITS = 4, LZMA_MATCH_MIN_LEN = 2, LZMA_IS_MATCH = 0, LZMA_IS_REP = (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)), LZMA_IS_REP_G0 = (LZMA_IS_REP + LZMA_NUM_STATES), LZMA_IS_REP_G1 = (LZMA_IS_REP_G0 + LZMA_NUM_STATES), LZMA_IS_REP_G2 = (LZMA_IS_REP_G1 + LZMA_NUM_STATES), LZMA_IS_REP_0_LONG = (LZMA_IS_REP_G2 + LZMA_NUM_STATES), LZMA_POS_SLOT = (LZMA_IS_REP_0_LONG \ + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)), LZMA_SPEC_POS = (LZMA_POS_SLOT \ + (LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS)), LZMA_ALIGN = (LZMA_SPEC_POS \ + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX), LZMA_LEN_CODER = (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS)), LZMA_REP_LEN_CODER = (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS), LZMA_LITERAL = (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS), }; USE_DESKTOP(long long) int unpack_lzma_stream(int src_fd, int dst_fd) { USE_DESKTOP(long long total_written = 0;) lzma_header_t header; int lc, pb, lp; uint32_t pos_state_mask; uint32_t literal_pos_mask; uint32_t pos; uint16_t *p; uint16_t *prob; uint16_t *prob_lit; int num_bits; int num_probs; rc_t *rc; int i, mi; uint8_t *buffer; uint8_t previous_byte = 0; size_t buffer_pos = 0, global_pos = 0; int len = 0; int state = 0; uint32_t rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1; xread(src_fd, &header, sizeof(header)); if (header.pos >= (9 * 5 * 5)) bb_error_msg_and_die("bad header"); mi = header.pos / 9; lc = header.pos % 9; pb = mi / 5; lp = mi % 5; pos_state_mask = (1 << pb) - 1; literal_pos_mask = (1 << lp) - 1; header.dict_size = SWAP_LE32(header.dict_size); header.dst_size = SWAP_LE64(header.dst_size); if (header.dict_size == 0) header.dict_size = 1; buffer = xmalloc(MIN(header.dst_size, header.dict_size)); num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)); p = xmalloc(num_probs * sizeof(*p)); num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp)); for (i = 0; i < num_probs; i++) p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1; rc = rc_init(src_fd); /*, RC_BUFFER_SIZE); */ while (global_pos + buffer_pos < header.dst_size) { int pos_state = (buffer_pos + global_pos) & pos_state_mask; prob = p + LZMA_IS_MATCH + (state << LZMA_NUM_POS_BITS_MAX) + pos_state; if (rc_is_bit_0(rc, prob)) { mi = 1; rc_update_bit_0(rc, prob); prob = (p + LZMA_LITERAL + (LZMA_LIT_SIZE * ((((buffer_pos + global_pos) & literal_pos_mask) << lc) + (previous_byte >> (8 - lc))))); if (state >= LZMA_NUM_LIT_STATES) { int match_byte; pos = buffer_pos - rep0; while (pos >= header.dict_size) pos += header.dict_size; match_byte = buffer[pos]; do { int bit; match_byte <<= 1; bit = match_byte & 0x100; prob_lit = prob + 0x100 + bit + mi; if (rc_get_bit(rc, prob_lit, &mi)) { if (!bit) break; } else { if (bit) break; } } while (mi < 0x100); } while (mi < 0x100) { prob_lit = prob + mi; rc_get_bit(rc, prob_lit, &mi); } previous_byte = (uint8_t) mi; buffer[buffer_pos++] = previous_byte; if (buffer_pos == header.dict_size) { buffer_pos = 0; global_pos += header.dict_size; if (full_write(dst_fd, buffer, header.dict_size) != header.dict_size) goto bad; USE_DESKTOP(total_written += header.dict_size;) } if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; } else { int offset; uint16_t *prob_len; rc_update_bit_1(rc, prob); prob = p + LZMA_IS_REP + state; if (rc_is_bit_0(rc, prob)) { rc_update_bit_0(rc, prob); rep3 = rep2; rep2 = rep1; rep1 = rep0; state = state < LZMA_NUM_LIT_STATES ? 0 : 3; prob = p + LZMA_LEN_CODER; } else { rc_update_bit_1(rc, prob); prob = p + LZMA_IS_REP_G0 + state; if (rc_is_bit_0(rc, prob)) { rc_update_bit_0(rc, prob); prob = (p + LZMA_IS_REP_0_LONG + (state << LZMA_NUM_POS_BITS_MAX) + pos_state); if (rc_is_bit_0(rc, prob)) { rc_update_bit_0(rc, prob); state = state < LZMA_NUM_LIT_STATES ? 9 : 11; pos = buffer_pos - rep0; while (pos >= header.dict_size) pos += header.dict_size; previous_byte = buffer[pos]; buffer[buffer_pos++] = previous_byte; if (buffer_pos == header.dict_size) { buffer_pos = 0; global_pos += header.dict_size; if (full_write(dst_fd, buffer, header.dict_size) != header.dict_size) goto bad; USE_DESKTOP(total_written += header.dict_size;) } continue; } else { rc_update_bit_1(rc, prob); } } else { uint32_t distance; rc_update_bit_1(rc, prob); prob = p + LZMA_IS_REP_G1 + state; if (rc_is_bit_0(rc, prob)) { rc_update_bit_0(rc, prob); distance = rep1; } else { rc_update_bit_1(rc, prob); prob = p + LZMA_IS_REP_G2 + state; if (rc_is_bit_0(rc, prob)) { rc_update_bit_0(rc, prob); distance = rep2; } else { rc_update_bit_1(rc, prob); distance = rep3; rep3 = rep2; } rep2 = rep1; } rep1 = rep0; rep0 = distance; } state = state < LZMA_NUM_LIT_STATES ? 8 : 11; prob = p + LZMA_REP_LEN_CODER; } prob_len = prob + LZMA_LEN_CHOICE; if (rc_is_bit_0(rc, prob_len)) { rc_update_bit_0(rc, prob_len); prob_len = (prob + LZMA_LEN_LOW + (pos_state << LZMA_LEN_NUM_LOW_BITS)); offset = 0; num_bits = LZMA_LEN_NUM_LOW_BITS; } else { rc_update_bit_1(rc, prob_len); prob_len = prob + LZMA_LEN_CHOICE_2; if (rc_is_bit_0(rc, prob_len)) { rc_update_bit_0(rc, prob_len); prob_len = (prob + LZMA_LEN_MID + (pos_state << LZMA_LEN_NUM_MID_BITS)); offset = 1 << LZMA_LEN_NUM_LOW_BITS; num_bits = LZMA_LEN_NUM_MID_BITS; } else { rc_update_bit_1(rc, prob_len); prob_len = prob + LZMA_LEN_HIGH; offset = ((1 << LZMA_LEN_NUM_LOW_BITS) + (1 << LZMA_LEN_NUM_MID_BITS)); num_bits = LZMA_LEN_NUM_HIGH_BITS; } } rc_bit_tree_decode(rc, prob_len, num_bits, &len); len += offset; if (state < 4) { int pos_slot; state += LZMA_NUM_LIT_STATES; prob = p + LZMA_POS_SLOT + ((len < LZMA_NUM_LEN_TO_POS_STATES ? len : LZMA_NUM_LEN_TO_POS_STATES - 1) << LZMA_NUM_POS_SLOT_BITS); rc_bit_tree_decode(rc, prob, LZMA_NUM_POS_SLOT_BITS, &pos_slot); if (pos_slot >= LZMA_START_POS_MODEL_INDEX) { num_bits = (pos_slot >> 1) - 1; rep0 = 2 | (pos_slot & 1); if (pos_slot < LZMA_END_POS_MODEL_INDEX) { rep0 <<= num_bits; prob = p + LZMA_SPEC_POS + rep0 - pos_slot - 1; } else { num_bits -= LZMA_NUM_ALIGN_BITS; while (num_bits--) rep0 = (rep0 << 1) | rc_direct_bit(rc); prob = p + LZMA_ALIGN; rep0 <<= LZMA_NUM_ALIGN_BITS; num_bits = LZMA_NUM_ALIGN_BITS; } i = 1; mi = 1; while (num_bits--) { if (rc_get_bit(rc, prob + mi, &mi)) rep0 |= i; i <<= 1; } } else rep0 = pos_slot; if (++rep0 == 0) break; } len += LZMA_MATCH_MIN_LEN; do { pos = buffer_pos - rep0; while (pos >= header.dict_size) pos += header.dict_size; previous_byte = buffer[pos]; buffer[buffer_pos++] = previous_byte; if (buffer_pos == header.dict_size) { buffer_pos = 0; global_pos += header.dict_size; if (full_write(dst_fd, buffer, header.dict_size) != header.dict_size) goto bad; USE_DESKTOP(total_written += header.dict_size;) } len--; } while (len != 0 && buffer_pos < header.dst_size); } } if (full_write(dst_fd, buffer, buffer_pos) != buffer_pos) { bad: rc_free(rc); return -1; } rc_free(rc); USE_DESKTOP(total_written += buffer_pos;) return USE_DESKTOP(total_written) + 0; }