From 90b0d3304455ad432c49f38e0419ac7820a625f7 Mon Sep 17 00:00:00 2001 From: Denys Vlasenko Date: Sun, 28 Nov 2021 15:38:51 +0100 Subject: tls: P256: add 64-bit montgomery reduce (disabled), small optimization in 32-bit code function old new delta sp_512to256_mont_reduce_8 191 185 -6 Signed-off-by: Denys Vlasenko --- networking/tls_sp_c32.c | 177 +++++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 159 insertions(+), 18 deletions(-) (limited to 'networking') diff --git a/networking/tls_sp_c32.c b/networking/tls_sp_c32.c index eb6cc24..b1c4100 100644 --- a/networking/tls_sp_c32.c +++ b/networking/tls_sp_c32.c @@ -705,36 +705,174 @@ static void sp_256_mont_tpl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* } } -/* Shift the result in the high 256 bits down to the bottom. - */ +/* Shift the result in the high 256 bits down to the bottom. */ static void sp_512to256_mont_shift_8(sp_digit* r, sp_digit* a) { memcpy(r, a + 8, sizeof(*r) * 8); } +// Disabled for now. Seems to work, but ugly and 40 bytes larger on x86-64. +#if 0 //UNALIGNED_LE_64BIT +/* 64-bit little-endian optimized version. + * See generic 32-bit version below for explanation. + * The benefit of this version is: even though r[3] calculation is atrocious, + * we call sp_256_mul_add_4() four times, not 8. + */ +static int sp_256_mul_add_4(uint64_t *r /*, const uint64_t* a, uint64_t b*/) +{ + uint64_t b = r[0]; + +# if 0 + const uint64_t* a = (const void*)p256_mod; +//a[3..0] = ffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff + uint128_t t; + int i; + t = 0; + for (i = 0; i < 4; i++) { + uint32_t t_hi; + uint128_t m = ((uint128_t)b * a[i]) + r[i]; + t += m; + t_hi = (t < m); + r[i] = (uint64_t)t; + t = (t >> 64) | ((uint128_t)t_hi << 64); + } + r[4] += (uint64_t)t; + return (r[4] < (uint64_t)t); /* 1 if addition overflowed */ +# else + // Unroll, then optimize the above loop: + //uint32_t t_hi; + //uint128_t m; + uint64_t t64, t64u; + + //m = ((uint128_t)b * a[0]) + r[0]; + // Since b is r[0] and a[0] is ffffffffffffffff, the above optimizes to: + // m = r[0] * ffffffffffffffff + r[0] = (r[0] << 64 - r[0]) + r[0] = r[0] << 64; + //t += m; + // t = r[0] << 64 = b << 64; + //t_hi = (t < m); + // t_hi = 0; + //r[0] = (uint64_t)t; +// r[0] = 0; +//the store can be eliminated since caller won't look at lower 256 bits of the result + //t = (t >> 64) | ((uint128_t)t_hi << 64); + // t = b; + + //m = ((uint128_t)b * a[1]) + r[1]; + // Since a[1] is 00000000ffffffff, the above optimizes to: + // m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1]; + //t += m; + // t = b + (b << 32) - b + r[1] = (b << 32) + r[1]; + //t_hi = (t < m); + // t_hi = 0; + //r[1] = (uint64_t)t; + r[1] += (b << 32); + //t = (t >> 64) | ((uint128_t)t_hi << 64); + t64 = (r[1] < (b << 32)); + t64 += (b >> 32); + + //m = ((uint128_t)b * a[2]) + r[2]; + // Since a[2] is 0000000000000000, the above optimizes to: + // m = b * 0 + r[2] = r[2]; + //t += m; + // t = t64 + r[2]; + //t_hi = (t < m); + // t_hi = 0; + //r[2] = (uint64_t)t; + r[2] += t64; + //t = (t >> 64) | ((uint128_t)t_hi << 64); + t64 = (r[2] < t64); + + //m = ((uint128_t)b * a[3]) + r[3]; + // Since a[3] is ffffffff00000001, the above optimizes to: + // m = b * ffffffff00000001 + r[3]; + // m = b + b*ffffffff00000000 + r[3] + // m = b + (b*ffffffff << 32) + r[3] + // m = b + (((b<<32) - b) << 32) + r[3] + //t += m; + // t = t64 + (uint128_t)b + ((((uint128_t)b << 32) - b) << 32) + r[3]; + t64 += b; + t64u = (t64 < b); + t64 += r[3]; + t64u += (t64 < r[3]); + { + uint64_t lo,hi; + //lo = (((b << 32) - b) << 32 + //hi = (((uint128_t)b << 32) - b) >> 32 + //but without uint128_t: + hi = (b << 32) - b; /* form lower 32 bits of "hi" part 1 */ + b = (b >> 32) - (/*borrowed above?*/(b << 32) < b); /* upper 32 bits of "hi" are in b */ + lo = hi << 32; /* (use "hi" value to calculate "lo",... */ + t64 += lo; /* ...consume... */ + t64u += (t64 < lo); /* ..."lo") */ + hi >>= 32; /* form lower 32 bits of "hi" part 2 */ + hi |= (b << 32); /* combine lower and upper */ + t64u += hi; /* consume "hi" */ + } + //t_hi = (t < m); + // t_hi = 0; + //r[3] = (uint64_t)t; + r[3] = t64; + //t = (t >> 64) | ((uint128_t)t_hi << 64); + // t = t64u; + + r[4] += t64u; + return (r[4] < t64u); /* 1 if addition overflowed */ +# endif +} + +static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* aa/*, const sp_digit* m, sp_digit mp*/) +{ +// const sp_digit* m = p256_mod; + int i; + uint64_t *a = (void*)aa; + + sp_digit carry = 0; + for (i = 0; i < 4; i++) { +// mu = a[i]; + if (sp_256_mul_add_4(a+i /*, m, mu*/)) { + int j = i + 4; + inc_next_word: + if (++j > 7) { /* a[8] array has no more words? */ + carry++; + continue; + } + if (++a[j] == 0) /* did this overflow too? */ + goto inc_next_word; + } + } + sp_512to256_mont_shift_8(r, aa); + if (carry != 0) + sp_256_sub_8_p256_mod(r); + sp_256_norm_8(r); +} + +#else /* Generic 32-bit version */ + /* Mul a by scalar b and add into r. (r += a * b) * a = p256_mod * b = r[0] */ static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/) { -// const sp_digit* a = p256_mod; -//a[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff sp_digit b = r[0]; - uint64_t t; -// t = 0; -// for (i = 0; i < 8; i++) { -// uint32_t t_hi; -// uint64_t m = ((uint64_t)b * a[i]) + r[i]; -// t += m; -// t_hi = (t < m); -// r[i] = (sp_digit)t; -// t = (t >> 32) | ((uint64_t)t_hi << 32); -// } -// r[8] += (sp_digit)t; - +# if 0 + const sp_digit* a = p256_mod; +//a[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff + int i; + t = 0; + for (i = 0; i < 8; i++) { + uint32_t t_hi; + uint64_t m = ((uint64_t)b * a[i]) + r[i]; + t += m; + t_hi = (t < m); + r[i] = (sp_digit)t; + t = (t >> 32) | ((uint64_t)t_hi << 32); + } + r[8] += (sp_digit)t; + return (r[8] < (sp_digit)t); /* 1 if addition overflowed */ +# else // Unroll, then optimize the above loop: //uint32_t t_hi; uint64_t m; @@ -748,7 +886,8 @@ static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/) //t_hi = (t < m); // t_hi = 0; //r[0] = (sp_digit)t; - r[0] = 0; +// r[0] = 0; +//the store can be eliminated since caller won't look at lower 256 bits of the result //t = (t >> 32) | ((uint64_t)t_hi << 32); // t = b; @@ -840,6 +979,7 @@ static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/) r[8] += (sp_digit)t; return (r[8] < (sp_digit)t); /* 1 if addition overflowed */ +# endif } /* Reduce the number back to 256 bits using Montgomery reduction. @@ -861,7 +1001,7 @@ static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/) * Then a multiple of modulus is added to make T divisible by B^2. * [In our case, it is (p256_mp_mod * a[1]) << 32.] * And so on. Eventually T is divisible by R, and after division by R - * the algorithm is in the same place as the usual Montgomery reduction was. + * the algorithm is in the same place as the usual Montgomery reduction. * * TODO: Can conditionally use 64-bit (if bit-little-endian arch) logic? */ @@ -914,6 +1054,7 @@ static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* a/*, const sp_digit sp_256_norm_8(r); } } +#endif /* Multiply two Montogmery form numbers mod the modulus (prime). * (r = a * b mod m) -- cgit v1.1