summaryrefslogtreecommitdiff
path: root/networking
diff options
context:
space:
mode:
Diffstat (limited to 'networking')
-rw-r--r--networking/tls_sp_c32.c33
1 files changed, 23 insertions, 10 deletions
diff --git a/networking/tls_sp_c32.c b/networking/tls_sp_c32.c
index 9bd5c68..eb6cc24 100644
--- a/networking/tls_sp_c32.c
+++ b/networking/tls_sp_c32.c
@@ -850,6 +850,20 @@ static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/)
* a Double-wide number to reduce. Clobbered.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
+ *
+ * Montgomery reduction on multiprecision integers:
+ * Montgomery reduction requires products modulo R.
+ * When R is a power of B [in our case R=2^128, B=2^32], there is a variant
+ * of Montgomery reduction which requires products only of machine word sized
+ * integers. T is stored as an little-endian word array a[0..n]. The algorithm
+ * reduces it one word at a time. First an appropriate multiple of modulus
+ * is added to make T divisible by B. [In our case, it is p256_mp_mod * a[0].]
+ * Then a multiple of modulus is added to make T divisible by B^2.
+ * [In our case, it is (p256_mp_mod * a[1]) << 32.]
+ * And so on. Eventually T is divisible by R, and after division by R
+ * the algorithm is in the same place as the usual Montgomery reduction was.
+ *
+ * TODO: Can conditionally use 64-bit (if bit-little-endian arch) logic?
*/
static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* a/*, const sp_digit* m, sp_digit mp*/)
{
@@ -941,15 +955,6 @@ static void sp_256_mont_sqr_8(sp_digit* r, const sp_digit* a
* r Inverse result. Must not coincide with a.
* a Number to invert.
*/
-#if 0
-//p256_mod - 2:
-//ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff - 2
-//Bit pattern:
-//2 2 2 2 2 2 2 1...1
-//5 5 4 3 2 1 0 9...0 9...1
-//543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210
-//111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101
-#endif
static void sp_256_mont_inv_8(sp_digit* r, sp_digit* a)
{
int i;
@@ -957,7 +962,15 @@ static void sp_256_mont_inv_8(sp_digit* r, sp_digit* a)
memcpy(r, a, sizeof(sp_digit) * 8);
for (i = 254; i >= 0; i--) {
sp_256_mont_sqr_8(r, r /*, p256_mod, p256_mp_mod*/);
- /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
+/* p256_mod - 2:
+ * ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff - 2
+ * Bit pattern:
+ * 2 2 2 2 2 2 2 1...1
+ * 5 5 4 3 2 1 0 9...0 9...1
+ * 543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210
+ * 111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101
+ */
+ /*if (p256_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
if (i >= 224 || i == 192 || (i <= 95 && i != 1))
sp_256_mont_mul_8(r, r, a /*, p256_mod, p256_mp_mod*/);
}