diff options
Diffstat (limited to 'networking/tls_pstm.c')
-rw-r--r-- | networking/tls_pstm.c | 2254 |
1 files changed, 2254 insertions, 0 deletions
diff --git a/networking/tls_pstm.c b/networking/tls_pstm.c new file mode 100644 index 0000000..0d797f8 --- /dev/null +++ b/networking/tls_pstm.c @@ -0,0 +1,2254 @@ +/* + * Copyright (C) 2017 Denys Vlasenko + * + * Licensed under GPLv2, see file LICENSE in this source tree. + */ +#include "tls.h" + +/** + * @file pstm.c + * @version 33ef80f (HEAD, tag: MATRIXSSL-3-7-2-OPEN, tag: MATRIXSSL-3-7-2-COMM, origin/master, origin/HEAD, master) + * + * Multiprecision number implementation. + */ +/* + * Copyright (c) 2013-2015 INSIDE Secure Corporation + * Copyright (c) PeerSec Networks, 2002-2011 + * All Rights Reserved + * + * The latest version of this code is available at http://www.matrixssl.org + * + * This software is open source; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This General Public License does NOT permit incorporating this software + * into proprietary programs. If you are unable to comply with the GPL, a + * commercial license for this software may be purchased from INSIDE at + * http://www.insidesecure.com/eng/Company/Locations + * + * This program is distributed in WITHOUT ANY WARRANTY; without even the + * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + * See the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * http://www.gnu.org/copyleft/gpl.html + */ +/******************************************************************************/ + +///bbox +//#include "../cryptoApi.h" +#ifndef DISABLE_PSTM + +static int32 pstm_mul_2d(pstm_int *a, int16 b, pstm_int *c); + +/******************************************************************************/ +/* + init an pstm_int for a given size + */ +int32 pstm_init_size(psPool_t *pool, pstm_int * a, uint32 size) +{ +// uint16 x; + +/* + alloc mem + */ + a->dp = xzalloc(sizeof (pstm_digit) * size); + a->pool = pool; + a->used = 0; + a->alloc = (int16)size; + a->sign = PSTM_ZPOS; +/* + zero the digits + */ +///bbox +// for (x = 0; x < size; x++) { +// a->dp[x] = 0; +// } + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + Init a new pstm_int. +*/ +int32 pstm_init(psPool_t *pool, pstm_int * a) +{ +// int32 i; +/* + allocate memory required and clear it + */ + a->dp = xzalloc(sizeof (pstm_digit) * PSTM_DEFAULT_INIT); +/* + set the digits to zero + */ +///bbox +// for (i = 0; i < PSTM_DEFAULT_INIT; i++) { +// a->dp[i] = 0; +// } +/* + set the used to zero, allocated digits to the default precision and sign + to positive + */ + a->pool = pool; + a->used = 0; + a->alloc = PSTM_DEFAULT_INIT; + a->sign = PSTM_ZPOS; + + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + Grow as required + */ +int32 pstm_grow(pstm_int * a, int16 size) +{ + int16 i; + pstm_digit *tmp; + +/* + If the alloc size is smaller alloc more ram. + */ + if (a->alloc < size) { +/* + Reallocate the array a->dp + + We store the return in a temporary variable in case the operation + failed we don't want to overwrite the dp member of a. +*/ + tmp = xrealloc(a->dp, sizeof (pstm_digit) * size); +/* + reallocation succeeded so set a->dp + */ + a->dp = tmp; +/* + zero excess digits + */ + i = a->alloc; + a->alloc = size; + for (; i < a->alloc; i++) { + a->dp[i] = 0; + } + } + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + copy, b = a (b must be pre-allocated) + */ +int32 pstm_copy(pstm_int * a, pstm_int * b) +{ + int32 res, n; + +/* + If dst == src do nothing + */ + if (a == b) { + return PSTM_OKAY; + } +/* + Grow dest + */ + if (b->alloc < a->used) { + if ((res = pstm_grow (b, a->used)) != PSTM_OKAY) { + return res; + } + } +/* + Zero b and copy the parameters over + */ + { + register pstm_digit *tmpa, *tmpb; + + /* pointer aliases */ + /* source */ + tmpa = a->dp; + + /* destination */ + tmpb = b->dp; + + /* copy all the digits */ + for (n = 0; n < a->used; n++) { + *tmpb++ = *tmpa++; + } + + /* clear high digits */ + for (; n < b->used; n++) { + *tmpb++ = 0; + } + } +/* + copy used count and sign + */ + b->used = a->used; + b->sign = a->sign; + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + Trim unused digits + + This is used to ensure that leading zero digits are trimed and the + leading "used" digit will be non-zero. Typically very fast. Also fixes + the sign if there are no more leading digits +*/ +void pstm_clamp(pstm_int * a) +{ +/* decrease used while the most significant digit is zero. */ + while (a->used > 0 && a->dp[a->used - 1] == 0) { + --(a->used); + } +/* reset the sign flag if used == 0 */ + if (a->used == 0) { + a->sign = PSTM_ZPOS; + } +} + +/******************************************************************************/ +/* + clear one (frees). + */ +void pstm_clear(pstm_int * a) +{ + int32 i; +/* + only do anything if a hasn't been freed previously + */ + if (a != NULL && a->dp != NULL) { +/* + first zero the digits + */ + for (i = 0; i < a->used; i++) { + a->dp[i] = 0; + } + + psFree (a->dp, a->pool); +/* + reset members to make debugging easier + */ + a->dp = NULL; + a->alloc = a->used = 0; + a->sign = PSTM_ZPOS; + } +} + +/******************************************************************************/ +/* + clear many (frees). + */ +void pstm_clear_multi(pstm_int *mp0, pstm_int *mp1, pstm_int *mp2, + pstm_int *mp3, pstm_int *mp4, pstm_int *mp5, + pstm_int *mp6, pstm_int *mp7) +{ + int32 n; /* Number of ok inits */ + + pstm_int *tempArray[9]; + + tempArray[0] = mp0; + tempArray[1] = mp1; + tempArray[2] = mp2; + tempArray[3] = mp3; + tempArray[4] = mp4; + tempArray[5] = mp5; + tempArray[6] = mp6; + tempArray[7] = mp7; + tempArray[8] = NULL; + + for (n = 0; tempArray[n] != NULL; n++) { + if ((tempArray[n] != NULL) && (tempArray[n]->dp != NULL)) { + pstm_clear(tempArray[n]); + } + } +} + +/******************************************************************************/ +/* + Set to zero. + */ +void pstm_zero(pstm_int * a) +{ + int32 n; + pstm_digit *tmp; + + a->sign = PSTM_ZPOS; + a->used = 0; + + tmp = a->dp; + for (n = 0; n < a->alloc; n++) { + *tmp++ = 0; + } +} + + +/******************************************************************************/ +/* + Compare maginitude of two ints (unsigned). + */ +int32 pstm_cmp_mag(pstm_int * a, pstm_int * b) +{ + int16 n; + pstm_digit *tmpa, *tmpb; + +/* + compare based on # of non-zero digits + */ + if (a->used > b->used) { + return PSTM_GT; + } + + if (a->used < b->used) { + return PSTM_LT; + } + + /* alias for a */ + tmpa = a->dp + (a->used - 1); + + /* alias for b */ + tmpb = b->dp + (a->used - 1); + +/* + compare based on digits + */ + for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { + if (*tmpa > *tmpb) { + return PSTM_GT; + } + if (*tmpa < *tmpb) { + return PSTM_LT; + } + } + return PSTM_EQ; +} + +/******************************************************************************/ +/* + Compare two ints (signed) + */ +int32 pstm_cmp(pstm_int * a, pstm_int * b) +{ +/* + compare based on sign + */ + if (a->sign != b->sign) { + if (a->sign == PSTM_NEG) { + return PSTM_LT; + } else { + return PSTM_GT; + } + } +/* + compare digits + */ + if (a->sign == PSTM_NEG) { + /* if negative compare opposite direction */ + return pstm_cmp_mag(b, a); + } else { + return pstm_cmp_mag(a, b); + } +} + +/******************************************************************************/ +/* + pstm_ints can be initialized more precisely when they will populated + using pstm_read_unsigned_bin since the length of the byte stream is known +*/ +int32 pstm_init_for_read_unsigned_bin(psPool_t *pool, pstm_int *a, uint32 len) +{ + int32 size; +/* + Need to set this based on how many words max it will take to store the bin. + The magic + 2: + 1 to round up for the remainder of this integer math + 1 for the initial carry of '1' bits that fall between DIGIT_BIT and 8 +*/ + size = (((len / sizeof(pstm_digit)) * (sizeof(pstm_digit) * CHAR_BIT)) + / DIGIT_BIT) + 2; + return pstm_init_size(pool, a, size); +} + + +/******************************************************************************/ +/* + Reads a unsigned char array into pstm_int format. User should have + called pstm_init_for_read_unsigned_bin first. There is some grow logic + here if the default pstm_init was used but we don't really want to hit it. +*/ +int32 pstm_read_unsigned_bin(pstm_int *a, unsigned char *b, int32 c) +{ + /* zero the int */ + pstm_zero (a); + +/* + If we know the endianness of this architecture, and we're using + 32-bit pstm_digits, we can optimize this +*/ +#if (defined(ENDIAN_LITTLE) || defined(ENDIAN_BIG)) && !defined(PSTM_64BIT) + /* But not for both simultaneously */ +#if defined(ENDIAN_LITTLE) && defined(ENDIAN_BIG) +#error Both ENDIAN_LITTLE and ENDIAN_BIG defined. +#endif + { + unsigned char *pd; + if ((unsigned)c > (PSTM_MAX_SIZE * sizeof(pstm_digit))) { + uint32 excess = c - (PSTM_MAX_SIZE * sizeof(pstm_digit)); + c -= excess; + b += excess; + } + a->used = (int16)((c + sizeof(pstm_digit) - 1)/sizeof(pstm_digit)); + if (a->alloc < a->used) { + if (pstm_grow(a, a->used) != PSTM_OKAY) { + return PSTM_MEM; + } + } + pd = (unsigned char *)a->dp; + /* read the bytes in */ +#ifdef ENDIAN_BIG + { + /* Use Duff's device to unroll the loop. */ + int32 idx = (c - 1) & ~3; + switch (c % 4) { + case 0: do { pd[idx+0] = *b++; + case 3: pd[idx+1] = *b++; + case 2: pd[idx+2] = *b++; + case 1: pd[idx+3] = *b++; + idx -= 4; + } while ((c -= 4) > 0); + } + } +#else + for (c -= 1; c >= 0; c -= 1) { + pd[c] = *b++; + } +#endif + } +#else + /* Big enough based on the len? */ + a->used = (((c / sizeof(pstm_digit)) * (sizeof(pstm_digit) * CHAR_BIT)) + / DIGIT_BIT) + 2; + + if (a->alloc < a->used) { + if (pstm_grow(a, a->used) != PSTM_OKAY) { + return PSTM_MEM; + } + } + /* read the bytes in */ + for (; c > 0; c--) { + if (pstm_mul_2d (a, 8, a) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + a->dp[0] |= *b++; + a->used += 1; + } +#endif + + pstm_clamp (a); + return PS_SUCCESS; +} + +/******************************************************************************/ +/* +*/ +int16 pstm_count_bits (pstm_int * a) +{ + int16 r; + pstm_digit q; + + if (a->used == 0) { + return 0; + } + + /* get number of digits and add that */ + r = (a->used - 1) * DIGIT_BIT; + + /* take the last digit and count the bits in it */ + q = a->dp[a->used - 1]; + while (q > ((pstm_digit) 0)) { + ++r; + q >>= ((pstm_digit) 1); + } + return r; +} + +/******************************************************************************/ +int32 pstm_unsigned_bin_size(pstm_int *a) +{ + int32 size = pstm_count_bits (a); + return (size / 8 + ((size & 7) != 0 ? 1 : 0)); +} + +/******************************************************************************/ +void pstm_set(pstm_int *a, pstm_digit b) +{ + pstm_zero(a); + a->dp[0] = b; + a->used = a->dp[0] ? 1 : 0; +} + +/******************************************************************************/ +/* + Right shift +*/ +void pstm_rshd(pstm_int *a, int16 x) +{ + int16 y; + + /* too many digits just zero and return */ + if (x >= a->used) { + pstm_zero(a); + return; + } + + /* shift */ + for (y = 0; y < a->used - x; y++) { + a->dp[y] = a->dp[y+x]; + } + + /* zero rest */ + for (; y < a->used; y++) { + a->dp[y] = 0; + } + + /* decrement count */ + a->used -= x; + pstm_clamp(a); +} + +/******************************************************************************/ +/* + Shift left a certain amount of digits. + */ +int32 pstm_lshd(pstm_int * a, int16 b) +{ + int16 x; + int32 res; + +/* + If its less than zero return. + */ + if (b <= 0) { + return PSTM_OKAY; + } +/* + Grow to fit the new digits. + */ + if (a->alloc < a->used + b) { + if ((res = pstm_grow (a, a->used + b)) != PSTM_OKAY) { + return res; + } + } + + { + register pstm_digit *top, *bottom; +/* + Increment the used by the shift amount then copy upwards. + */ + a->used += b; + + /* top */ + top = a->dp + a->used - 1; + + /* base */ + bottom = a->dp + a->used - 1 - b; +/* + This is implemented using a sliding window except the window goes the + other way around. Copying from the bottom to the top. + */ + for (x = a->used - 1; x >= b; x--) { + *top-- = *bottom--; + } + + /* zero the lower digits */ + top = a->dp; + for (x = 0; x < b; x++) { + *top++ = 0; + } + } + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + computes a = 2**b +*/ +int32 pstm_2expt(pstm_int *a, int16 b) +{ + int16 z; + + /* zero a as per default */ + pstm_zero (a); + + if (b < 0) { + return PSTM_OKAY; + } + + z = b / DIGIT_BIT; + if (z >= PSTM_MAX_SIZE) { + return PS_LIMIT_FAIL; + } + + /* set the used count of where the bit will go */ + a->used = z + 1; + + if (a->used > a->alloc) { + if (pstm_grow(a, a->used) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + } + + /* put the single bit in its place */ + a->dp[z] = ((pstm_digit)1) << (b % DIGIT_BIT); + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + +*/ +int32 pstm_mul_2(pstm_int * a, pstm_int * b) +{ + int32 res; + int16 x, oldused; + +/* + grow to accomodate result + */ + if (b->alloc < a->used + 1) { + if ((res = pstm_grow (b, a->used + 1)) != PSTM_OKAY) { + return res; + } + } + oldused = b->used; + b->used = a->used; + + { + register pstm_digit r, rr, *tmpa, *tmpb; + + /* alias for source */ + tmpa = a->dp; + + /* alias for dest */ + tmpb = b->dp; + + /* carry */ + r = 0; + for (x = 0; x < a->used; x++) { +/* + get what will be the *next* carry bit from the + MSB of the current digit +*/ + rr = *tmpa >> ((pstm_digit)(DIGIT_BIT - 1)); +/* + now shift up this digit, add in the carry [from the previous] +*/ + *tmpb++ = ((*tmpa++ << ((pstm_digit)1)) | r); +/* + copy the carry that would be from the source + digit into the next iteration +*/ + r = rr; + } + + /* new leading digit? */ + if (r != 0 && b->used != (PSTM_MAX_SIZE-1)) { + /* add a MSB which is always 1 at this point */ + *tmpb = 1; + ++(b->used); + } +/* + now zero any excess digits on the destination that we didn't write to +*/ + tmpb = b->dp + b->used; + for (x = b->used; x < oldused; x++) { + *tmpb++ = 0; + } + } + b->sign = a->sign; + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + unsigned subtraction ||a|| >= ||b|| ALWAYS! +*/ +int32 s_pstm_sub(pstm_int *a, pstm_int *b, pstm_int *c) +{ + int16 oldbused, oldused; + int32 x; + pstm_word t; + + if (b->used > a->used) { + return PS_LIMIT_FAIL; + } + if (c->alloc < a->used) { + if ((x = pstm_grow (c, a->used)) != PSTM_OKAY) { + return x; + } + } + oldused = c->used; + oldbused = b->used; + c->used = a->used; + t = 0; + + for (x = 0; x < oldbused; x++) { + t = ((pstm_word)a->dp[x]) - (((pstm_word)b->dp[x]) + t); + c->dp[x] = (pstm_digit)t; + t = (t >> DIGIT_BIT)&1; + } + for (; x < a->used; x++) { + t = ((pstm_word)a->dp[x]) - t; + c->dp[x] = (pstm_digit)t; + t = (t >> DIGIT_BIT); + } + for (; x < oldused; x++) { + c->dp[x] = 0; + } + pstm_clamp(c); + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + unsigned addition +*/ +static int32 s_pstm_add(pstm_int *a, pstm_int *b, pstm_int *c) +{ + int16 x, y, oldused; + register pstm_word t, adp, bdp; + + y = a->used; + if (b->used > y) { + y = b->used; + } + oldused = c->used; + c->used = y; + + if (c->used > c->alloc) { + if (pstm_grow(c, c->used) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + } + + t = 0; + for (x = 0; x < y; x++) { + if (a->used < x) { + adp = 0; + } else { + adp = (pstm_word)a->dp[x]; + } + if (b->used < x) { + bdp = 0; + } else { + bdp = (pstm_word)b->dp[x]; + } + t += (adp) + (bdp); + c->dp[x] = (pstm_digit)t; + t >>= DIGIT_BIT; + } + if (t != 0 && x < PSTM_MAX_SIZE) { + if (c->used == c->alloc) { + if (pstm_grow(c, c->alloc + 1) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + } + c->dp[c->used++] = (pstm_digit)t; + ++x; + } + + c->used = x; + for (; x < oldused; x++) { + c->dp[x] = 0; + } + pstm_clamp(c); + return PSTM_OKAY; +} + + +/******************************************************************************/ +/* + +*/ +int32 pstm_sub(pstm_int *a, pstm_int *b, pstm_int *c) +{ + int32 res; + int16 sa, sb; + + sa = a->sign; + sb = b->sign; + + if (sa != sb) { +/* + subtract a negative from a positive, OR a positive from a negative. + For both, ADD their magnitudes, and use the sign of the first number. + */ + c->sign = sa; + if ((res = s_pstm_add (a, b, c)) != PSTM_OKAY) { + return res; + } + } else { +/* + subtract a positive from a positive, OR a negative from a negative. + First, take the difference between their magnitudes, then... + */ + if (pstm_cmp_mag (a, b) != PSTM_LT) { + /* Copy the sign from the first */ + c->sign = sa; + /* The first has a larger or equal magnitude */ + if ((res = s_pstm_sub (a, b, c)) != PSTM_OKAY) { + return res; + } + } else { + /* The result has the _opposite_ sign from the first number. */ + c->sign = (sa == PSTM_ZPOS) ? PSTM_NEG : PSTM_ZPOS; + /* The second has a larger magnitude */ + if ((res = s_pstm_sub (b, a, c)) != PSTM_OKAY) { + return res; + } + } + } + return PS_SUCCESS; +} + +/******************************************************************************/ +/* + c = a - b +*/ +int32 pstm_sub_d(psPool_t *pool, pstm_int *a, pstm_digit b, pstm_int *c) +{ + pstm_int tmp; + int32 res; + + if (pstm_init_size(pool, &tmp, sizeof(pstm_digit)) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + pstm_set(&tmp, b); + res = pstm_sub(a, &tmp, c); + pstm_clear(&tmp); + return res; +} + +/******************************************************************************/ +/* + setups the montgomery reduction +*/ +int32 pstm_montgomery_setup(pstm_int *a, pstm_digit *rho) +{ + pstm_digit x, b; + +/* + fast inversion mod 2**k + Based on the fact that + XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) + => 2*X*A - X*X*A*A = 1 + => 2*(1) - (1) = 1 + */ + b = a->dp[0]; + + if ((b & 1) == 0) { + psTraceCrypto("pstm_montogomery_setup failure\n"); + return PS_ARG_FAIL; + } + + x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ + x *= 2 - b * x; /* here x*a==1 mod 2**8 */ + x *= 2 - b * x; /* here x*a==1 mod 2**16 */ + x *= 2 - b * x; /* here x*a==1 mod 2**32 */ +#ifdef PSTM_64BIT + x *= 2 - b * x; /* here x*a==1 mod 2**64 */ +#endif + /* rho = -1/m mod b */ + *rho = (pstm_digit)(((pstm_word) 1 << ((pstm_word) DIGIT_BIT)) - + ((pstm_word)x)); + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + * computes a = B**n mod b without division or multiplication useful for + * normalizing numbers in a Montgomery system. + */ +int32 pstm_montgomery_calc_normalization(pstm_int *a, pstm_int *b) +{ + int32 x; + int16 bits; + + /* how many bits of last digit does b use */ + bits = pstm_count_bits (b) % DIGIT_BIT; + if (!bits) bits = DIGIT_BIT; + + /* compute A = B^(n-1) * 2^(bits-1) */ + if (b->used > 1) { + if ((x = pstm_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != + PSTM_OKAY) { + return x; + } + } else { + pstm_set(a, 1); + bits = 1; + } + + /* now compute C = A * B mod b */ + for (x = bits - 1; x < (int32)DIGIT_BIT; x++) { + if (pstm_mul_2 (a, a) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + if (pstm_cmp_mag (a, b) != PSTM_LT) { + if (s_pstm_sub (a, b, a) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + } + } + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + c = a * 2**d +*/ +static int32 pstm_mul_2d(pstm_int *a, int16 b, pstm_int *c) +{ + pstm_digit carry, carrytmp, shift; + int16 x; + + /* copy it */ + if (pstm_copy(a, c) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + + /* handle whole digits */ + if (b >= DIGIT_BIT) { + if (pstm_lshd(c, b/DIGIT_BIT) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + } + b %= DIGIT_BIT; + + /* shift the digits */ + if (b != 0) { + carry = 0; + shift = DIGIT_BIT - b; + for (x = 0; x < c->used; x++) { + carrytmp = c->dp[x] >> shift; + c->dp[x] = (c->dp[x] << b) + carry; + carry = carrytmp; + } + /* store last carry if room */ + if (carry && x < PSTM_MAX_SIZE) { + if (c->used == c->alloc) { + if (pstm_grow(c, c->alloc + 1) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + } + c->dp[c->used++] = carry; + } + } + pstm_clamp(c); + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + c = a mod 2**d +*/ +static int32 pstm_mod_2d(pstm_int *a, int16 b, pstm_int *c) +{ + int16 x; + + /* zero if count less than or equal to zero */ + if (b <= 0) { + pstm_zero(c); + return PSTM_OKAY; + } + + /* get copy of input */ + if (pstm_copy(a, c) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + + /* if 2**d is larger than we just return */ + if (b >= (DIGIT_BIT * a->used)) { + return PSTM_OKAY; + } + + /* zero digits above the last digit of the modulus */ + for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) + { + c->dp[x] = 0; + } + /* clear the digit that is not completely outside/inside the modulus */ + c->dp[b / DIGIT_BIT] &= ~((pstm_digit)0) >> (DIGIT_BIT - b); + pstm_clamp (c); + return PSTM_OKAY; +} + + +/******************************************************************************/ +/* + c = a * b +*/ +int32 pstm_mul_d(pstm_int *a, pstm_digit b, pstm_int *c) +{ + pstm_word w; + int32 res; + int16 x, oldused; + + if (c->alloc < a->used + 1) { + if ((res = pstm_grow (c, a->used + 1)) != PSTM_OKAY) { + return res; + } + } + oldused = c->used; + c->used = a->used; + c->sign = a->sign; + w = 0; + for (x = 0; x < a->used; x++) { + w = ((pstm_word)a->dp[x]) * ((pstm_word)b) + w; + c->dp[x] = (pstm_digit)w; + w = w >> DIGIT_BIT; + } + if (w != 0 && (a->used != PSTM_MAX_SIZE)) { + c->dp[c->used++] = (pstm_digit)w; + ++x; + } + for (; x < oldused; x++) { + c->dp[x] = 0; + } + pstm_clamp(c); + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + c = a / 2**b +*/ +int32 pstm_div_2d(psPool_t *pool, pstm_int *a, int16 b, pstm_int *c, + pstm_int *d) +{ + pstm_digit D, r, rr; + int32 res; + int16 x; + pstm_int t; + + /* if the shift count is <= 0 then we do no work */ + if (b <= 0) { + if (pstm_copy (a, c) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + if (d != NULL) { + pstm_zero (d); + } + return PSTM_OKAY; + } + + /* get the remainder */ + if (d != NULL) { + if (pstm_init(pool, &t) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + if (pstm_mod_2d (a, b, &t) != PSTM_OKAY) { + res = PS_MEM_FAIL; + goto LBL_DONE; + } + } + + /* copy */ + if (pstm_copy(a, c) != PSTM_OKAY) { + res = PS_MEM_FAIL; + goto LBL_DONE; + } + + /* shift by as many digits in the bit count */ + if (b >= (int32)DIGIT_BIT) { + pstm_rshd (c, b / DIGIT_BIT); + } + + /* shift any bit count < DIGIT_BIT */ + D = (pstm_digit) (b % DIGIT_BIT); + if (D != 0) { + register pstm_digit *tmpc, mask, shift; + + /* mask */ + mask = (((pstm_digit)1) << D) - 1; + + /* shift for lsb */ + shift = DIGIT_BIT - D; + + /* alias */ + tmpc = c->dp + (c->used - 1); + + /* carry */ + r = 0; + for (x = c->used - 1; x >= 0; x--) { + /* get the lower bits of this word in a temp */ + rr = *tmpc & mask; + + /* shift the current word and mix in the carry bits from previous */ + *tmpc = (*tmpc >> D) | (r << shift); + --tmpc; + + /* set the carry to the carry bits of the current word above */ + r = rr; + } + } + pstm_clamp (c); + + res = PSTM_OKAY; +LBL_DONE: + if (d != NULL) { + if (pstm_copy(&t, d) != PSTM_OKAY) { + res = PS_MEM_FAIL; + } + pstm_clear(&t); + } + return res; +} + +/******************************************************************************/ +/* + b = a/2 +*/ +int32 pstm_div_2(pstm_int * a, pstm_int * b) +{ + int16 x, oldused; + + if (b->alloc < a->used) { + if (pstm_grow(b, a->used) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + } + oldused = b->used; + b->used = a->used; + { + register pstm_digit r, rr, *tmpa, *tmpb; + + /* source alias */ + tmpa = a->dp + b->used - 1; + + /* dest alias */ + tmpb = b->dp + b->used - 1; + + /* carry */ + r = 0; + for (x = b->used - 1; x >= 0; x--) { + /* get the carry for the next iteration */ + rr = *tmpa & 1; + + /* shift the current digit, add in carry and store */ + *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); + + /* forward carry to next iteration */ + r = rr; + } + + /* zero excess digits */ + tmpb = b->dp + b->used; + for (x = b->used; x < oldused; x++) { + *tmpb++ = 0; + } + } + b->sign = a->sign; + pstm_clamp (b); + return PSTM_OKAY; +} + +/******************************************************************************/ +/* + Creates "a" then copies b into it + */ +int32 pstm_init_copy(psPool_t *pool, pstm_int * a, pstm_int * b, int16 toSqr) +{ + int16 x; + int32 res; + + if (a == b) { + return PSTM_OKAY; + } + x = b->alloc; + + if (toSqr) { +/* + Smart-size: Increasing size of a if b->used is roughly half + of b->alloc because usage has shown that a lot of these copies + go on to be squared and need these extra digits +*/ + if ((b->used * 2) + 2 >= x) { + x = (b->used * 2) + 3; + } + } + if ((res = pstm_init_size(pool, a, x)) != PSTM_OKAY) { + return res; + } + return pstm_copy(b, a); +} + +/******************************************************************************/ +/* + With some compilers, we have seen issues linking with the builtin + 64 bit division routine. The issues with either manifest in a failure + to find 'udivdi3' at link time, or a runtime invalid instruction fault + during an RSA operation. + The routine below divides a 64 bit unsigned int by a 32 bit unsigned int + explicitly, rather than using the division operation + The 64 bit result is placed in the 'numerator' parameter + The 32 bit mod (remainder) of the division is the return parameter + Based on implementations by: + Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> + Copyright (C) 1999 Hewlett-Packard Co + Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> +*/ +#if defined(USE_MATRIX_DIV64) && defined(PSTM_32BIT) +static uint32 psDiv64(uint64 *numerator, uint32 denominator) +{ + uint64 rem = *numerator; + uint64 b = denominator; + uint64 res = 0; + uint64 d = 1; + uint32 high = rem >> 32; + + if (high >= denominator) { + high /= denominator; + res = (uint64) high << 32; + rem -= (uint64) (high * denominator) << 32; + } + while ((int64)b > 0 && b < rem) { + b = b+b; + d = d+d; + } + do { + if (rem >= b) { + rem -= b; + res += d; + } + b >>= 1; + d >>= 1; + } while (d); + *numerator = res; + return rem; +} +#endif /* USE_MATRIX_DIV64 */ + +#if defined(USE_MATRIX_DIV128) && defined(PSTM_64BIT) +typedef unsigned long uint128 __attribute__ ((mode(TI))); +static uint64 psDiv128(uint128 *numerator, uint64 denominator) +{ + uint128 rem = *numerator; + uint128 b = denominator; + uint128 res = 0; + uint128 d = 1; + uint64 high = rem >> 64; + + if (high >= denominator) { + high /= denominator; + res = (uint128) high << 64; + rem -= (uint128) (high * denominator) << 64; + } + while ((uint128)b > 0 && b < rem) { + b = b+b; + d = d+d; + } + do { + if (rem >= b) { + rem -= b; + res += d; + } + b >>= 1; + d >>= 1; + } while (d); + *numerator = res; + return rem; +} +#endif /* USE_MATRIX_DIV128 */ + +/******************************************************************************/ +/* + a/b => cb + d == a +*/ +int32 pstm_div(psPool_t *pool, pstm_int *a, pstm_int *b, pstm_int *c, + pstm_int *d) +{ + pstm_int q, x, y, t1, t2; + int32 res; + int16 n, t, i, norm, neg; + + /* is divisor zero ? */ + if (pstm_iszero (b) == 1) { + return PS_LIMIT_FAIL; + } + + /* if a < b then q=0, r = a */ + if (pstm_cmp_mag (a, b) == PSTM_LT) { + if (d != NULL) { + if (pstm_copy(a, d) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + } + if (c != NULL) { + pstm_zero (c); + } + return PSTM_OKAY; + } +/* + Smart-size inits +*/ + if ((res = pstm_init_size(pool, &t1, a->alloc)) != PSTM_OKAY) { + return res; + } + if ((res = pstm_init_size(pool, &t2, 3)) != PSTM_OKAY) { + goto LBL_T1; + } + if ((res = pstm_init_copy(pool, &x, a, 0)) != PSTM_OKAY) { + goto LBL_T2; + } +/* + Used to be an init_copy on b but pstm_grow was always hit with triple size +*/ + if ((res = pstm_init_size(pool, &y, b->used * 3)) != PSTM_OKAY) { + goto LBL_X; + } + if ((res = pstm_copy(b, &y)) != PSTM_OKAY) { + goto LBL_Y; + } + + /* fix the sign */ + neg = (a->sign == b->sign) ? PSTM_ZPOS : PSTM_NEG; + x.sign = y.sign = PSTM_ZPOS; + + /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ + norm = pstm_count_bits(&y) % DIGIT_BIT; + if (norm < (int32)(DIGIT_BIT-1)) { + norm = (DIGIT_BIT-1) - norm; + if ((res = pstm_mul_2d(&x, norm, &x)) != PSTM_OKAY) { + goto LBL_Y; + } + if ((res = pstm_mul_2d(&y, norm, &y)) != PSTM_OKAY) { + goto LBL_Y; + } + } else { + norm = 0; + } + + /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ + n = x.used - 1; + t = y.used - 1; + + if ((res = pstm_init_size(pool, &q, n - t + 1)) != PSTM_OKAY) { + goto LBL_Y; + } + q.used = n - t + 1; + + /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ + if ((res = pstm_lshd(&y, n - t)) != PSTM_OKAY) { /* y = y*b**{n-t} */ + goto LBL_Q; + } + + while (pstm_cmp (&x, &y) != PSTM_LT) { + ++(q.dp[n - t]); + if ((res = pstm_sub(&x, &y, &x)) != PSTM_OKAY) { + goto LBL_Q; + } + } + + /* reset y by shifting it back down */ + pstm_rshd (&y, n - t); + + /* step 3. for i from n down to (t + 1) */ + for (i = n; i >= (t + 1); i--) { + if (i > x.used) { + continue; + } + + /* step 3.1 if xi == yt then set q{i-t-1} to b-1, + * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ + if (x.dp[i] == y.dp[t]) { + q.dp[i - t - 1] = (pstm_digit)((((pstm_word)1) << DIGIT_BIT) - 1); + } else { + pstm_word tmp; + tmp = ((pstm_word) x.dp[i]) << ((pstm_word) DIGIT_BIT); + tmp |= ((pstm_word) x.dp[i - 1]); +#if defined(USE_MATRIX_DIV64) && defined(PSTM_32BIT) + psDiv64(&tmp, y.dp[t]); +#elif defined(USE_MATRIX_DIV128) && defined(PSTM_64BIT) + psDiv128(&tmp, y.dp[t]); +#else + tmp /= ((pstm_word) y.dp[t]); +#endif /* USE_MATRIX_DIV64 */ + q.dp[i - t - 1] = (pstm_digit) (tmp); + } + + /* while (q{i-t-1} * (yt * b + y{t-1})) > + xi * b**2 + xi-1 * b + xi-2 + + do q{i-t-1} -= 1; + */ + q.dp[i - t - 1] = (q.dp[i - t - 1] + 1); + do { + q.dp[i - t - 1] = (q.dp[i - t - 1] - 1); + + /* find left hand */ + pstm_zero (&t1); + t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; + t1.dp[1] = y.dp[t]; + t1.used = 2; + if ((res = pstm_mul_d (&t1, q.dp[i - t - 1], &t1)) != PSTM_OKAY) { + goto LBL_Q; + } + + /* find right hand */ + t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; + t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; + t2.dp[2] = x.dp[i]; + t2.used = 3; + } while (pstm_cmp_mag(&t1, &t2) == PSTM_GT); + + /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ + if ((res = pstm_mul_d(&y, q.dp[i - t - 1], &t1)) != PSTM_OKAY) { + goto LBL_Q; + } + + if ((res = pstm_lshd(&t1, i - t - 1)) != PSTM_OKAY) { + goto LBL_Q; + } + + if ((res = pstm_sub(&x, &t1, &x)) != PSTM_OKAY) { + goto LBL_Q; + } + + /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ + if (x.sign == PSTM_NEG) { + if ((res = pstm_copy(&y, &t1)) != PSTM_OKAY) { + goto LBL_Q; + } + if ((res = pstm_lshd (&t1, i - t - 1)) != PSTM_OKAY) { + goto LBL_Q; + } + if ((res = pstm_add (&x, &t1, &x)) != PSTM_OKAY) { + goto LBL_Q; + } + q.dp[i - t - 1] = q.dp[i - t - 1] - 1; + } + } +/* + now q is the quotient and x is the remainder (which we have to normalize) +*/ + /* get sign before writing to c */ + x.sign = x.used == 0 ? PSTM_ZPOS : a->sign; + + if (c != NULL) { + pstm_clamp (&q); + if (pstm_copy (&q, c) != PSTM_OKAY) { + res = PS_MEM_FAIL; + goto LBL_Q; + } + c->sign = neg; + } + + if (d != NULL) { + if ((res = pstm_div_2d (pool, &x, norm, &x, NULL)) != PSTM_OKAY) { + goto LBL_Q; + } +/* + the following is a kludge, essentially we were seeing the right + remainder but with excess digits that should have been zero + */ + for (i = b->used; i < x.used; i++) { + x.dp[i] = 0; + } + pstm_clamp(&x); + if (pstm_copy (&x, d) != PSTM_OKAY) { + res = PS_MEM_FAIL; + goto LBL_Q; + } + } + + res = PSTM_OKAY; + +LBL_Q:pstm_clear (&q); +LBL_Y:pstm_clear (&y); +LBL_X:pstm_clear (&x); +LBL_T2:pstm_clear (&t2); +LBL_T1:pstm_clear (&t1); + + return res; +} + +/******************************************************************************/ +/* + Swap the elements of two integers, for cases where you can't simply swap + the pstm_int pointers around +*/ +void pstm_exch(pstm_int * a, pstm_int * b) +{ + pstm_int t; + + t = *a; + *a = *b; + *b = t; +} + +/******************************************************************************/ +/* + c = a mod b, 0 <= c < b +*/ +int32 pstm_mod(psPool_t *pool, pstm_int *a, pstm_int *b, pstm_int *c) +{ + pstm_int t; + int32 err; +/* + Smart-size +*/ + if ((err = pstm_init_size(pool, &t, b->alloc)) != PSTM_OKAY) { + return err; + } + if ((err = pstm_div(pool, a, b, NULL, &t)) != PSTM_OKAY) { + pstm_clear (&t); + return err; + } + if (t.sign != b->sign) { + err = pstm_add(&t, b, c); + } else { + pstm_exch (&t, c); + } + pstm_clear (&t); + return err; +} + +/******************************************************************************/ +/* + d = a * b (mod c) +*/ +int32 pstm_mulmod(psPool_t *pool, pstm_int *a, pstm_int *b, pstm_int *c, + pstm_int *d) +{ + int32 res; + int16 size; + pstm_int tmp; + +/* + Smart-size pstm_inits. d is an output that is influenced by this local 't' + so don't shrink 'd' if it wants to becuase this will lead to an pstm_grow + in RSA operations +*/ + size = a->used + b->used + 1; + if ((a == d) && (size < a->alloc)) { + size = a->alloc; + } + if ((res = pstm_init_size(pool, &tmp, size)) != PSTM_OKAY) { + return res; + } + if ((res = pstm_mul_comba(pool, a, b, &tmp, NULL, 0)) != PSTM_OKAY) { + pstm_clear(&tmp); + return res; + } + res = pstm_mod(pool, &tmp, c, d); + pstm_clear(&tmp); + return res; +} + +/******************************************************************************/ +/* + * y = g**x (mod b) + * Some restrictions... x must be positive and < b + */ +int32 pstm_exptmod(psPool_t *pool, pstm_int *G, pstm_int *X, pstm_int *P, + pstm_int *Y) +{ + pstm_int M[32], res; /* Keep this winsize based: (1 << max_winsize) */ + pstm_digit buf, mp; + pstm_digit *paD; + int32 err, bitbuf; + int16 bitcpy, bitcnt, mode, digidx, x, y, winsize; + uint32 paDlen; + + /* set window size from what user set as optimization */ + x = pstm_count_bits(X); + if (x < 50) { + winsize = 2; + } else { + winsize = PS_EXPTMOD_WINSIZE; + } + + /* now setup montgomery */ + if ((err = pstm_montgomery_setup (P, &mp)) != PSTM_OKAY) { + return err; + } + + /* setup result */ + if ((err = pstm_init_size(pool, &res, (P->used * 2) + 1)) != PSTM_OKAY) { + return err; + } +/* + create M table + The M table contains powers of the input base, e.g. M[x] = G^x mod P + The first half of the table is not computed though except for M[0] and M[1] + */ + /* now we need R mod m */ + if ((err = pstm_montgomery_calc_normalization (&res, P)) != PSTM_OKAY) { + goto LBL_RES; + } +/* + init M array + init first cell + */ + if ((err = pstm_init_size(pool, &M[1], res.used)) != PSTM_OKAY) { + goto LBL_RES; + } + + /* now set M[1] to G * R mod m */ + if (pstm_cmp_mag(P, G) != PSTM_GT) { + /* G > P so we reduce it first */ + if ((err = pstm_mod(pool, G, P, &M[1])) != PSTM_OKAY) { + goto LBL_M; + } + } else { + if ((err = pstm_copy(G, &M[1])) != PSTM_OKAY) { + goto LBL_M; + } + } + if ((err = pstm_mulmod (pool, &M[1], &res, P, &M[1])) != PSTM_OKAY) { + goto LBL_M; + } +/* + Pre-allocated digit. Used for mul, sqr, AND reduce +*/ + paDlen = ((M[1].used + 3) * 2) * sizeof(pstm_digit); + paD = xzalloc(paDlen); +/* + compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times + */ + if (pstm_init_copy(pool, &M[1 << (winsize - 1)], &M[1], 1) != PSTM_OKAY) { + err = PS_MEM_FAIL; + goto LBL_PAD; + } + for (x = 0; x < (winsize - 1); x++) { + if ((err = pstm_sqr_comba (pool, &M[1 << (winsize - 1)], + &M[1 << (winsize - 1)], paD, paDlen)) != PSTM_OKAY) { + goto LBL_PAD; + } + if ((err = pstm_montgomery_reduce(pool, &M[1 << (winsize - 1)], P, mp, + paD, paDlen)) != PSTM_OKAY) { + goto LBL_PAD; + } + } +/* + now init the second half of the array +*/ + for (x = (1<<(winsize-1)) + 1; x < (1 << winsize); x++) { + if ((err = pstm_init_size(pool, &M[x], M[1<<(winsize-1)].alloc + 1)) + != PSTM_OKAY) { + for (y = 1<<(winsize-1); y < x; y++) { + pstm_clear(&M[y]); + } + goto LBL_PAD; + } + } + + /* create upper table */ + for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { + if ((err = pstm_mul_comba(pool, &M[x - 1], &M[1], &M[x], paD, paDlen)) + != PSTM_OKAY) { + goto LBL_MARRAY; + } + if ((err = pstm_montgomery_reduce(pool, &M[x], P, mp, paD, paDlen)) != + PSTM_OKAY) { + goto LBL_MARRAY; + } + } + + /* set initial mode and bit cnt */ + mode = 0; + bitcnt = 1; + buf = 0; + digidx = X->used - 1; + bitcpy = 0; + bitbuf = 0; + + for (;;) { + /* grab next digit as required */ + if (--bitcnt == 0) { + /* if digidx == -1 we are out of digits so break */ + if (digidx == -1) { + break; + } + /* read next digit and reset bitcnt */ + buf = X->dp[digidx--]; + bitcnt = (int32)DIGIT_BIT; + } + + /* grab the next msb from the exponent */ + y = (pstm_digit)(buf >> (DIGIT_BIT - 1)) & 1; + buf <<= (pstm_digit)1; +/* + If the bit is zero and mode == 0 then we ignore it. + These represent the leading zero bits before the first 1 bit + in the exponent. Technically this opt is not required but it + does lower the # of trivial squaring/reductions used +*/ + if (mode == 0 && y == 0) { + continue; + } + + /* if the bit is zero and mode == 1 then we square */ + if (mode == 1 && y == 0) { + if ((err = pstm_sqr_comba(pool, &res, &res, paD, paDlen)) != + PSTM_OKAY) { + goto LBL_MARRAY; + } + if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD, paDlen)) + != PSTM_OKAY) { + goto LBL_MARRAY; + } + continue; + } + + /* else we add it to the window */ + bitbuf |= (y << (winsize - ++bitcpy)); + mode = 2; + + if (bitcpy == winsize) { + /* ok window is filled so square as required and mul square first */ + for (x = 0; x < winsize; x++) { + if ((err = pstm_sqr_comba(pool, &res, &res, paD, paDlen)) != + PSTM_OKAY) { + goto LBL_MARRAY; + } + if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD, + paDlen)) != PSTM_OKAY) { + goto LBL_MARRAY; + } + } + + /* then multiply */ + if ((err = pstm_mul_comba(pool, &res, &M[bitbuf], &res, paD, + paDlen)) != PSTM_OKAY) { + goto LBL_MARRAY; + } + if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD, paDlen)) + != PSTM_OKAY) { + goto LBL_MARRAY; + } + + /* empty window and reset */ + bitcpy = 0; + bitbuf = 0; + mode = 1; + } + } + + /* if bits remain then square/multiply */ + if (mode == 2 && bitcpy > 0) { + /* square then multiply if the bit is set */ + for (x = 0; x < bitcpy; x++) { + if ((err = pstm_sqr_comba(pool, &res, &res, paD, paDlen)) != + PSTM_OKAY) { + goto LBL_MARRAY; + } + if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD, paDlen)) + != PSTM_OKAY) { + goto LBL_MARRAY; + } + + /* get next bit of the window */ + bitbuf <<= 1; + if ((bitbuf & (1 << winsize)) != 0) { + /* then multiply */ + if ((err = pstm_mul_comba(pool, &res, &M[1], &res, paD, paDlen)) + != PSTM_OKAY) { + goto LBL_MARRAY; + } + if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD, + paDlen)) != PSTM_OKAY) { + goto LBL_MARRAY; + } + } + } + } +/* + Fix up result if Montgomery reduction is used recall that any value in a + Montgomery system is actually multiplied by R mod n. So we have to reduce + one more time to cancel out the factor of R. +*/ + if ((err = pstm_montgomery_reduce(pool, &res, P, mp, paD, paDlen)) != + PSTM_OKAY) { + goto LBL_MARRAY; + } + /* swap res with Y */ + if ((err = pstm_copy (&res, Y)) != PSTM_OKAY) { + goto LBL_MARRAY; + } + err = PSTM_OKAY; +LBL_MARRAY: + for (x = 1<<(winsize-1); x < (1 << winsize); x++) { + pstm_clear(&M[x]); + } +LBL_PAD:psFree(paD, pool); +LBL_M: pstm_clear(&M[1]); +LBL_RES:pstm_clear(&res); + return err; +} + +/******************************************************************************/ +/* + +*/ +int32 pstm_add(pstm_int *a, pstm_int *b, pstm_int *c) +{ + int32 res; + int16 sa, sb; + + /* get sign of both inputs */ + sa = a->sign; + sb = b->sign; + + /* handle two cases, not four */ + if (sa == sb) { + /* both positive or both negative, add their mags, copy the sign */ + c->sign = sa; + if ((res = s_pstm_add (a, b, c)) != PSTM_OKAY) { + return res; + } + } else { +/* + one positive, the other negative + subtract the one with the greater magnitude from the one of the lesser + magnitude. The result gets the sign of the one with the greater mag. + */ + if (pstm_cmp_mag (a, b) == PSTM_LT) { + c->sign = sb; + if ((res = s_pstm_sub (b, a, c)) != PSTM_OKAY) { + return res; + } + } else { + c->sign = sa; + if ((res = s_pstm_sub (a, b, c)) != PSTM_OKAY) { + return res; + } + } + } + return PS_SUCCESS; +} + +/******************************************************************************/ +/* + reverse an array, used for radix code +*/ +static void pstm_reverse (unsigned char *s, int16 len) +{ + int32 ix, iy; + unsigned char t; + + ix = 0; + iy = len - 1; + while (ix < iy) { + t = s[ix]; + s[ix] = s[iy]; + s[iy] = t; + ++ix; + --iy; + } +} +/******************************************************************************/ +/* + No reverse. Useful in some of the EIP-154 PKA stuff where special byte + order seems to come into play more often +*/ +int32 pstm_to_unsigned_bin_nr(psPool_t *pool, pstm_int *a, unsigned char *b) +{ + int32 res; + int16 x; + pstm_int t = { 0 }; + + if ((res = pstm_init_copy(pool, &t, a, 0)) != PSTM_OKAY) { + return res; + } + + x = 0; + while (pstm_iszero (&t) == 0) { + b[x++] = (unsigned char) (t.dp[0] & 255); + if ((res = pstm_div_2d (pool, &t, 8, &t, NULL)) != PSTM_OKAY) { + pstm_clear(&t); + return res; + } + } + pstm_clear(&t); + return PS_SUCCESS; +} +/******************************************************************************/ +/* + +*/ +int32 pstm_to_unsigned_bin(psPool_t *pool, pstm_int *a, unsigned char *b) +{ + int32 res; + int16 x; + pstm_int t = { 0 }; + + if ((res = pstm_init_copy(pool, &t, a, 0)) != PSTM_OKAY) { + return res; + } + + x = 0; + while (pstm_iszero (&t) == 0) { + b[x++] = (unsigned char) (t.dp[0] & 255); + if ((res = pstm_div_2d (pool, &t, 8, &t, NULL)) != PSTM_OKAY) { + pstm_clear(&t); + return res; + } + } + pstm_reverse (b, x); + pstm_clear(&t); + return PS_SUCCESS; +} + +/******************************************************************************/ +/* + compare against a single digit +*/ +int32 pstm_cmp_d(pstm_int *a, pstm_digit b) +{ + /* compare based on sign */ + if ((b && a->used == 0) || a->sign == PSTM_NEG) { + return PSTM_LT; + } + + /* compare based on magnitude */ + if (a->used > 1) { + return PSTM_GT; + } + + /* compare the only digit of a to b */ + if (a->dp[0] > b) { + return PSTM_GT; + } else if (a->dp[0] < b) { + return PSTM_LT; + } else { + return PSTM_EQ; + } +} + +/* + Need invmod for ECC and also private key loading for hardware crypto + in cases where dQ > dP. The values must be switched and a new qP must be + calculated using this function +*/ +static int32 pstm_invmod_slow(psPool_t *pool, pstm_int * a, pstm_int * b, + pstm_int * c) +{ + pstm_int x, y, u, v, A, B, C, D; + int32 res; + + /* b cannot be negative */ + if (b->sign == PSTM_NEG || pstm_iszero(b) == 1) { + return PS_LIMIT_FAIL; + } + + /* init temps */ + if (pstm_init_size(pool, &x, b->used) != PSTM_OKAY) { + return PS_MEM_FAIL; + } + + /* x = a, y = b */ + if ((res = pstm_mod(pool, a, b, &x)) != PSTM_OKAY) { + goto LBL_X; + } + + if (pstm_init_copy(pool, &y, b, 0) != PSTM_OKAY) { + goto LBL_X; + } + + /* 2. [modified] if x,y are both even then return an error! */ + if (pstm_iseven (&x) == 1 && pstm_iseven (&y) == 1) { + res = PS_FAILURE; + goto LBL_Y; + } + + /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ + if ((res = pstm_init_copy(pool, &u, &x, 0)) != PSTM_OKAY) { + goto LBL_Y; + } + if ((res = pstm_init_copy(pool, &v, &y, 0)) != PSTM_OKAY) { + goto LBL_U; + } + + if ((res = pstm_init_size(pool, &A, sizeof(pstm_digit))) != PSTM_OKAY) { + goto LBL_V; + } + + if ((res = pstm_init_size(pool, &D, sizeof(pstm_digit))) != PSTM_OKAY) { + goto LBL_A; + } + pstm_set (&A, 1); + pstm_set (&D, 1); + + if ((res = pstm_init(pool, &B)) != PSTM_OKAY) { + goto LBL_D; + } + if ((res = pstm_init(pool, &C)) != PSTM_OKAY) { + goto LBL_B; + } + +top: + /* 4. while u is even do */ + while (pstm_iseven (&u) == 1) { + /* 4.1 u = u/2 */ + if ((res = pstm_div_2 (&u, &u)) != PSTM_OKAY) { + goto LBL_C; + } + + /* 4.2 if A or B is odd then */ + if (pstm_isodd (&A) == 1 || pstm_isodd (&B) == 1) { + /* A = (A+y)/2, B = (B-x)/2 */ + if ((res = pstm_add (&A, &y, &A)) != PSTM_OKAY) { + goto LBL_C; + } + if ((res = pstm_sub (&B, &x, &B)) != PSTM_OKAY) { + goto LBL_C; + } + } + /* A = A/2, B = B/2 */ + if ((res = pstm_div_2 (&A, &A)) != PSTM_OKAY) { + goto LBL_C; + } + if ((res = pstm_div_2 (&B, &B)) != PSTM_OKAY) { + goto LBL_C; + } + } + + /* 5. while v is even do */ + while (pstm_iseven (&v) == 1) { + /* 5.1 v = v/2 */ + if ((res = pstm_div_2 (&v, &v)) != PSTM_OKAY) { + goto LBL_C; + } + + /* 5.2 if C or D is odd then */ + if (pstm_isodd (&C) == 1 || pstm_isodd (&D) == 1) { + /* C = (C+y)/2, D = (D-x)/2 */ + if ((res = pstm_add (&C, &y, &C)) != PSTM_OKAY) { + goto LBL_C; + } + if ((res = pstm_sub (&D, &x, &D)) != PSTM_OKAY) { + goto LBL_C; + } + } + /* C = C/2, D = D/2 */ + if ((res = pstm_div_2 (&C, &C)) != PSTM_OKAY) { + goto LBL_C; + } + if ((res = pstm_div_2 (&D, &D)) != PSTM_OKAY) { + goto LBL_C; + } + } + + /* 6. if u >= v then */ + if (pstm_cmp (&u, &v) != PSTM_LT) { + /* u = u - v, A = A - C, B = B - D */ + if ((res = pstm_sub (&u, &v, &u)) != PSTM_OKAY) { + goto LBL_C; + } + if ((res = pstm_sub (&A, &C, &A)) != PSTM_OKAY) { + goto LBL_C; + } + if ((res = pstm_sub (&B, &D, &B)) != PSTM_OKAY) { + goto LBL_C; + } + } else { + /* v - v - u, C = C - A, D = D - B */ + if ((res = pstm_sub (&v, &u, &v)) != PSTM_OKAY) { + goto LBL_C; + } + if ((res = pstm_sub (&C, &A, &C)) != PSTM_OKAY) { + goto LBL_C; + } + if ((res = pstm_sub (&D, &B, &D)) != PSTM_OKAY) { + goto LBL_C; + } + } + + /* if not zero goto step 4 */ + if (pstm_iszero (&u) == 0) + goto top; + + /* now a = C, b = D, gcd == g*v */ + + /* if v != 1 then there is no inverse */ + if (pstm_cmp_d (&v, 1) != PSTM_EQ) { + res = PS_FAILURE; + goto LBL_C; + } + + /* if its too low */ + while (pstm_cmp_d(&C, 0) == PSTM_LT) { + if ((res = pstm_add(&C, b, &C)) != PSTM_OKAY) { + goto LBL_C; + } + } + + /* too big */ + while (pstm_cmp_mag(&C, b) != PSTM_LT) { + if ((res = pstm_sub(&C, b, &C)) != PSTM_OKAY) { + goto LBL_C; + } + } + + /* C is now the inverse */ + if ((res = pstm_copy(&C, c)) != PSTM_OKAY) { + goto LBL_C; + } + res = PSTM_OKAY; + +LBL_C: pstm_clear(&C); +LBL_D: pstm_clear(&D); +LBL_B: pstm_clear(&B); +LBL_A: pstm_clear(&A); +LBL_V: pstm_clear(&v); +LBL_U: pstm_clear(&u); +LBL_Y: pstm_clear(&y); +LBL_X: pstm_clear(&x); + + return res; +} + +/* c = 1/a (mod b) for odd b only */ +int32 pstm_invmod(psPool_t *pool, pstm_int *a, pstm_int *b, pstm_int *c) +{ + pstm_int x, y, u, v, B, D; + int32 res; + uint16 neg, sanity; + + /* 2. [modified] b must be odd */ + if (pstm_iseven (b) == 1) { + return pstm_invmod_slow(pool, a,b,c); + } + + /* x == modulus, y == value to invert */ + if ((res = pstm_init_copy(pool, &x, b, 0)) != PSTM_OKAY) { + return res; + } + + if ((res = pstm_init_size(pool, &y, a->alloc)) != PSTM_OKAY) { + goto LBL_X; + } + + /* we need y = |a| */ + pstm_abs(a, &y); + + /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ + if ((res = pstm_init_copy(pool, &u, &x, 0)) != PSTM_OKAY) { + goto LBL_Y; + } + if ((res = pstm_init_copy(pool, &v, &y, 0)) != PSTM_OKAY) { + goto LBL_U; + } + if ((res = pstm_init(pool, &B)) != PSTM_OKAY) { + goto LBL_V; + } + if ((res = pstm_init(pool, &D)) != PSTM_OKAY) { + goto LBL_B; + } + + pstm_set (&D, 1); + + sanity = 0; +top: + /* 4. while u is even do */ + while (pstm_iseven (&u) == 1) { + /* 4.1 u = u/2 */ + if ((res = pstm_div_2 (&u, &u)) != PSTM_OKAY) { + goto LBL_D; + } + + /* 4.2 if B is odd then */ + if (pstm_isodd (&B) == 1) { + if ((res = pstm_sub (&B, &x, &B)) != PSTM_OKAY) { + goto LBL_D; + } + } + /* B = B/2 */ + if ((res = pstm_div_2 (&B, &B)) != PSTM_OKAY) { + goto LBL_D; + } + } + + /* 5. while v is even do */ + while (pstm_iseven (&v) == 1) { + /* 5.1 v = v/2 */ + if ((res = pstm_div_2 (&v, &v)) != PSTM_OKAY) { + goto LBL_D; + } + /* 5.2 if D is odd then */ + if (pstm_isodd (&D) == 1) { + /* D = (D-x)/2 */ + if ((res = pstm_sub (&D, &x, &D)) != PSTM_OKAY) { + goto LBL_D; + } + } + /* D = D/2 */ + if ((res = pstm_div_2 (&D, &D)) != PSTM_OKAY) { + goto LBL_D; + } + } + + /* 6. if u >= v then */ + if (pstm_cmp (&u, &v) != PSTM_LT) { + /* u = u - v, B = B - D */ + if ((res = pstm_sub (&u, &v, &u)) != PSTM_OKAY) { + goto LBL_D; + } + if ((res = pstm_sub (&B, &D, &B)) != PSTM_OKAY) { + goto LBL_D; + } + } else { + /* v - v - u, D = D - B */ + if ((res = pstm_sub (&v, &u, &v)) != PSTM_OKAY) { + goto LBL_D; + } + if ((res = pstm_sub (&D, &B, &D)) != PSTM_OKAY) { + goto LBL_D; + } + } + + /* if not zero goto step 4 */ + if (sanity++ > 1000) { + res = PS_LIMIT_FAIL; + goto LBL_D; + } + if (pstm_iszero (&u) == 0) { + goto top; + } + + /* now a = C, b = D, gcd == g*v */ + + /* if v != 1 then there is no inverse */ + if (pstm_cmp_d (&v, 1) != PSTM_EQ) { + res = PS_FAILURE; + goto LBL_D; + } + + /* b is now the inverse */ + neg = a->sign; + while (D.sign == PSTM_NEG) { + if ((res = pstm_add (&D, b, &D)) != PSTM_OKAY) { + goto LBL_D; + } + } + if ((res = pstm_copy (&D, c)) != PSTM_OKAY) { + goto LBL_D; + } + c->sign = neg; + res = PSTM_OKAY; + +LBL_D: pstm_clear(&D); +LBL_B: pstm_clear(&B); +LBL_V: pstm_clear(&v); +LBL_U: pstm_clear(&u); +LBL_Y: pstm_clear(&y); +LBL_X: pstm_clear(&x); + return res; +} +#endif /* !DISABLE_PSTM */ +/******************************************************************************/ |