diff options
Diffstat (limited to 'libbb/hash_md5_sha.c')
-rw-r--r-- | libbb/hash_md5_sha.c | 962 |
1 files changed, 962 insertions, 0 deletions
diff --git a/libbb/hash_md5_sha.c b/libbb/hash_md5_sha.c new file mode 100644 index 0000000..3e708ef --- /dev/null +++ b/libbb/hash_md5_sha.c @@ -0,0 +1,962 @@ +/* vi: set sw=4 ts=4: */ +/* + * Based on shasum from http://www.netsw.org/crypto/hash/ + * Majorly hacked up to use Dr Brian Gladman's sha1 code + * + * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. + * Copyright (C) 2003 Glenn L. McGrath + * Copyright (C) 2003 Erik Andersen + * + * Licensed under GPLv2 or later, see file LICENSE in this source tree. + * + * --------------------------------------------------------------------------- + * Issue Date: 10/11/2002 + * + * This is a byte oriented version of SHA1 that operates on arrays of bytes + * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor + * + * --------------------------------------------------------------------------- + * + * SHA256 and SHA512 parts are: + * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. + * Shrank by Denys Vlasenko. + * + * --------------------------------------------------------------------------- + * + * The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c + * and replace "4096" with something like "2000 + time(NULL) % 2097", + * then rebuild and compare "shaNNNsum bigfile" results. + */ + +#include "libbb.h" + +/* gcc 4.2.1 optimizes rotr64 better with inline than with macro + * (for rotX32, there is no difference). Why? My guess is that + * macro requires clever common subexpression elimination heuristics + * in gcc, while inline basically forces it to happen. + */ +//#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n)))) +static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n) +{ + return (x << n) | (x >> (32 - n)); +} +//#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n)))) +static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n) +{ + return (x >> n) | (x << (32 - n)); +} +/* rotr64 in needed for sha512 only: */ +//#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n)))) +static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n) +{ + return (x >> n) | (x << (64 - n)); +} + + +static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx) +{ + unsigned t; + uint32_t W[80], a, b, c, d, e; + const uint32_t *words = (uint32_t*) ctx->wbuffer; + + for (t = 0; t < 16; ++t) + W[t] = SWAP_BE32(words[t]); + for (/*t = 16*/; t < 80; ++t) { + uint32_t T = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]; + W[t] = rotl32(T, 1); + } + + a = ctx->hash[0]; + b = ctx->hash[1]; + c = ctx->hash[2]; + d = ctx->hash[3]; + e = ctx->hash[4]; + +#undef ch +#undef parity +#undef maj +#undef rnd +#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) +#define parity(x,y,z) ((x) ^ (y) ^ (z)) +#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) +/* A normal version as set out in the FIPS. */ +#define rnd(f,k) \ + do { \ + uint32_t T = a; \ + a = rotl32(a, 5) + f(b, c, d) + e + k + W[t]; \ + e = d; \ + d = c; \ + c = rotl32(b, 30); \ + b = T; \ + } while (0) + + for (t = 0; t < 20; ++t) + rnd(ch, 0x5a827999); + + for (/*t = 20*/; t < 40; ++t) + rnd(parity, 0x6ed9eba1); + + for (/*t = 40*/; t < 60; ++t) + rnd(maj, 0x8f1bbcdc); + + for (/*t = 60*/; t < 80; ++t) + rnd(parity, 0xca62c1d6); +#undef ch +#undef parity +#undef maj +#undef rnd + + ctx->hash[0] += a; + ctx->hash[1] += b; + ctx->hash[2] += c; + ctx->hash[3] += d; + ctx->hash[4] += e; +} + +/* Constants for SHA512 from FIPS 180-2:4.2.3. + * SHA256 constants from FIPS 180-2:4.2.2 + * are the most significant half of first 64 elements + * of the same array. + */ +static const uint64_t sha_K[80] = { + 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, + 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, + 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, + 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, + 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, + 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, + 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, + 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, + 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, + 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, + 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, + 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, + 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, + 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, + 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, + 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, + 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, + 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, + 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, + 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, + 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, + 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, + 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, + 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, + 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, + 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, + 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, + 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, + 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, + 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, + 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, + 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, + 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, /* [64]+ are used for sha512 only */ + 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, + 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, + 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, + 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, + 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, + 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, + 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL +}; + +#undef Ch +#undef Maj +#undef S0 +#undef S1 +#undef R0 +#undef R1 + +static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx) +{ + unsigned t; + uint32_t W[64], a, b, c, d, e, f, g, h; + const uint32_t *words = (uint32_t*) ctx->wbuffer; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22)) +#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25)) +#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3)) +#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10)) + + /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ + for (t = 0; t < 16; ++t) + W[t] = SWAP_BE32(words[t]); + for (/*t = 16*/; t < 64; ++t) + W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; + + a = ctx->hash[0]; + b = ctx->hash[1]; + c = ctx->hash[2]; + d = ctx->hash[3]; + e = ctx->hash[4]; + f = ctx->hash[5]; + g = ctx->hash[6]; + h = ctx->hash[7]; + + /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ + for (t = 0; t < 64; ++t) { + /* Need to fetch upper half of sha_K[t] + * (I hope compiler is clever enough to just fetch + * upper half) + */ + uint32_t K_t = sha_K[t] >> 32; + uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t]; + uint32_t T2 = S0(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } +#undef Ch +#undef Maj +#undef S0 +#undef S1 +#undef R0 +#undef R1 + /* Add the starting values of the context according to FIPS 180-2:6.2.2 + step 4. */ + ctx->hash[0] += a; + ctx->hash[1] += b; + ctx->hash[2] += c; + ctx->hash[3] += d; + ctx->hash[4] += e; + ctx->hash[5] += f; + ctx->hash[6] += g; + ctx->hash[7] += h; +} + +static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx) +{ + unsigned t; + uint64_t W[80]; + /* On i386, having assignments here (not later as sha256 does) + * produces 99 bytes smaller code with gcc 4.3.1 + */ + uint64_t a = ctx->hash[0]; + uint64_t b = ctx->hash[1]; + uint64_t c = ctx->hash[2]; + uint64_t d = ctx->hash[3]; + uint64_t e = ctx->hash[4]; + uint64_t f = ctx->hash[5]; + uint64_t g = ctx->hash[6]; + uint64_t h = ctx->hash[7]; + const uint64_t *words = (uint64_t*) ctx->wbuffer; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39)) +#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41)) +#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7)) +#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6)) + + /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ + for (t = 0; t < 16; ++t) + W[t] = SWAP_BE64(words[t]); + for (/*t = 16*/; t < 80; ++t) + W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; + + /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ + for (t = 0; t < 80; ++t) { + uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t]; + uint64_t T2 = S0(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } +#undef Ch +#undef Maj +#undef S0 +#undef S1 +#undef R0 +#undef R1 + /* Add the starting values of the context according to FIPS 180-2:6.3.2 + step 4. */ + ctx->hash[0] += a; + ctx->hash[1] += b; + ctx->hash[2] += c; + ctx->hash[3] += d; + ctx->hash[4] += e; + ctx->hash[5] += f; + ctx->hash[6] += g; + ctx->hash[7] += h; +} + + +void FAST_FUNC sha1_begin(sha1_ctx_t *ctx) +{ + ctx->hash[0] = 0x67452301; + ctx->hash[1] = 0xefcdab89; + ctx->hash[2] = 0x98badcfe; + ctx->hash[3] = 0x10325476; + ctx->hash[4] = 0xc3d2e1f0; + ctx->total64 = 0; + ctx->process_block = sha1_process_block64; +} + +static const uint32_t init256[] = { + 0x6a09e667, + 0xbb67ae85, + 0x3c6ef372, + 0xa54ff53a, + 0x510e527f, + 0x9b05688c, + 0x1f83d9ab, + 0x5be0cd19, + 0, + 0, +}; +static const uint32_t init512_lo[] = { + 0xf3bcc908, + 0x84caa73b, + 0xfe94f82b, + 0x5f1d36f1, + 0xade682d1, + 0x2b3e6c1f, + 0xfb41bd6b, + 0x137e2179, + 0, + 0, +}; + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.2) */ +void FAST_FUNC sha256_begin(sha256_ctx_t *ctx) +{ + memcpy(ctx->hash, init256, sizeof(init256)); + /*ctx->total64 = 0; - done by extending init256 with two 32-bit zeros */ + ctx->process_block = sha256_process_block64; +} + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.3) */ +void FAST_FUNC sha512_begin(sha512_ctx_t *ctx) +{ + int i; + /* Two extra iterations zero out ctx->total64[] */ + for (i = 0; i < 8+2; i++) + ctx->hash[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i]; + /*ctx->total64[0] = ctx->total64[1] = 0; - already done */ +} + + +/* Used also for sha256 */ +void FAST_FUNC sha1_hash(sha1_ctx_t *ctx, const void *buffer, size_t len) +{ + unsigned bufpos = ctx->total64 & 63; + unsigned remaining; + + ctx->total64 += len; +#if 0 + remaining = 64 - bufpos; + + /* Hash whole blocks */ + while (len >= remaining) { + memcpy(ctx->wbuffer + bufpos, buffer, remaining); + buffer = (const char *)buffer + remaining; + len -= remaining; + remaining = 64; + bufpos = 0; + ctx->process_block(ctx); + } + + /* Save last, partial blosk */ + memcpy(ctx->wbuffer + bufpos, buffer, len); +#else + /* Tiny bit smaller code */ + while (1) { + remaining = 64 - bufpos; + if (remaining > len) + remaining = len; + /* Copy data into aligned buffer */ + memcpy(ctx->wbuffer + bufpos, buffer, remaining); + len -= remaining; + buffer = (const char *)buffer + remaining; + bufpos += remaining; + /* clever way to do "if (bufpos != 64) break; ... ; bufpos = 0;" */ + bufpos -= 64; + if (bufpos != 0) + break; + /* Buffer is filled up, process it */ + ctx->process_block(ctx); + /*bufpos = 0; - already is */ + } +#endif +} + +void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len) +{ + unsigned bufpos = ctx->total64[0] & 127; + unsigned remaining; + + /* First increment the byte count. FIPS 180-2 specifies the possible + length of the file up to 2^128 _bits_. + We compute the number of _bytes_ and convert to bits later. */ + ctx->total64[0] += len; + if (ctx->total64[0] < len) + ctx->total64[1]++; +#if 0 + remaining = 128 - bufpos; + + /* Hash whole blocks */ + while (len >= remaining) { + memcpy(ctx->wbuffer + bufpos, buffer, remaining); + buffer = (const char *)buffer + remaining; + len -= remaining; + remaining = 128; + bufpos = 0; + sha512_process_block128(ctx); + } + + /* Save last, partial blosk */ + memcpy(ctx->wbuffer + bufpos, buffer, len); +#else + while (1) { + remaining = 128 - bufpos; + if (remaining > len) + remaining = len; + /* Copy data into aligned buffer */ + memcpy(ctx->wbuffer + bufpos, buffer, remaining); + len -= remaining; + buffer = (const char *)buffer + remaining; + bufpos += remaining; + /* clever way to do "if (bufpos != 128) break; ... ; bufpos = 0;" */ + bufpos -= 128; + if (bufpos != 0) + break; + /* Buffer is filled up, process it */ + sha512_process_block128(ctx); + /*bufpos = 0; - already is */ + } +#endif +} + + +/* Used also for sha256 */ +void FAST_FUNC sha1_end(sha1_ctx_t *ctx, void *resbuf) +{ + unsigned bufpos = ctx->total64 & 63; + + /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */ + ctx->wbuffer[bufpos++] = 0x80; + + /* This loop iterates either once or twice, no more, no less */ + while (1) { + unsigned remaining = 64 - bufpos; + memset(ctx->wbuffer + bufpos, 0, remaining); + /* Do we have enough space for the length count? */ + if (remaining >= 8) { + /* Store the 64-bit counter of bits in the buffer in BE format */ + uint64_t t = ctx->total64 << 3; + t = SWAP_BE64(t); + /* wbuffer is suitably aligned for this */ + *(uint64_t *) (&ctx->wbuffer[64 - 8]) = t; + } + ctx->process_block(ctx); + if (remaining >= 8) + break; + bufpos = 0; + } + + bufpos = (ctx->process_block == sha1_process_block64) ? 5 : 8; + /* This way we do not impose alignment constraints on resbuf: */ + if (BB_LITTLE_ENDIAN) { + unsigned i; + for (i = 0; i < bufpos; ++i) + ctx->hash[i] = SWAP_BE32(ctx->hash[i]); + } + memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * bufpos); +} + +void FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf) +{ + unsigned bufpos = ctx->total64[0] & 127; + + /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... */ + ctx->wbuffer[bufpos++] = 0x80; + + while (1) { + unsigned remaining = 128 - bufpos; + memset(ctx->wbuffer + bufpos, 0, remaining); + if (remaining >= 16) { + /* Store the 128-bit counter of bits in the buffer in BE format */ + uint64_t t; + t = ctx->total64[0] << 3; + t = SWAP_BE64(t); + *(uint64_t *) (&ctx->wbuffer[128 - 8]) = t; + t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61); + t = SWAP_BE64(t); + *(uint64_t *) (&ctx->wbuffer[128 - 16]) = t; + } + sha512_process_block128(ctx); + if (remaining >= 16) + break; + bufpos = 0; + } + + if (BB_LITTLE_ENDIAN) { + unsigned i; + for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i) + ctx->hash[i] = SWAP_BE64(ctx->hash[i]); + } + memcpy(resbuf, ctx->hash, sizeof(ctx->hash)); +} + + +/* + * Compute MD5 checksum of strings according to the + * definition of MD5 in RFC 1321 from April 1992. + * + * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. + * + * Copyright (C) 1995-1999 Free Software Foundation, Inc. + * Copyright (C) 2001 Manuel Novoa III + * Copyright (C) 2003 Glenn L. McGrath + * Copyright (C) 2003 Erik Andersen + * + * Licensed under GPLv2 or later, see file LICENSE in this source tree. + */ + +/* 0: fastest, 3: smallest */ +#if CONFIG_MD5_SIZE_VS_SPEED < 0 +# define MD5_SIZE_VS_SPEED 0 +#elif CONFIG_MD5_SIZE_VS_SPEED > 3 +# define MD5_SIZE_VS_SPEED 3 +#else +# define MD5_SIZE_VS_SPEED CONFIG_MD5_SIZE_VS_SPEED +#endif + +/* Initialize structure containing state of computation. + * (RFC 1321, 3.3: Step 3) + */ +void FAST_FUNC md5_begin(md5_ctx_t *ctx) +{ + ctx->A = 0x67452301; + ctx->B = 0xefcdab89; + ctx->C = 0x98badcfe; + ctx->D = 0x10325476; + ctx->total64 = 0; +} + +/* These are the four functions used in the four steps of the MD5 algorithm + * and defined in the RFC 1321. The first function is a little bit optimized + * (as found in Colin Plumbs public domain implementation). + * #define FF(b, c, d) ((b & c) | (~b & d)) + */ +#undef FF +#undef FG +#undef FH +#undef FI +#define FF(b, c, d) (d ^ (b & (c ^ d))) +#define FG(b, c, d) FF(d, b, c) +#define FH(b, c, d) (b ^ c ^ d) +#define FI(b, c, d) (c ^ (b | ~d)) + +/* Hash a single block, 64 bytes long and 4-byte aligned */ +static void md5_process_block64(md5_ctx_t *ctx) +{ +#if MD5_SIZE_VS_SPEED > 0 + /* Before we start, one word to the strange constants. + They are defined in RFC 1321 as + T[i] = (int)(4294967296.0 * fabs(sin(i))), i=1..64 + */ + static const uint32_t C_array[] = { + /* round 1 */ + 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, + 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, + 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, + 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, + /* round 2 */ + 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, + 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, + 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, + 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, + /* round 3 */ + 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, + 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, + 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, + 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, + /* round 4 */ + 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, + 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, + 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, + 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 + }; + static const char P_array[] ALIGN1 = { +# if MD5_SIZE_VS_SPEED > 1 + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */ +# endif + 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */ + 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */ + 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */ + }; +#endif + uint32_t *words = (void*) ctx->wbuffer; + uint32_t A = ctx->A; + uint32_t B = ctx->B; + uint32_t C = ctx->C; + uint32_t D = ctx->D; + +#if MD5_SIZE_VS_SPEED >= 2 /* 2 or 3 */ + + static const char S_array[] ALIGN1 = { + 7, 12, 17, 22, + 5, 9, 14, 20, + 4, 11, 16, 23, + 6, 10, 15, 21 + }; + const uint32_t *pc; + const char *pp; + const char *ps; + int i; + uint32_t temp; + +# if BB_BIG_ENDIAN + for (i = 0; i < 16; i++) + words[i] = SWAP_LE32(words[i]); +# endif + +# if MD5_SIZE_VS_SPEED == 3 + pc = C_array; + pp = P_array; + ps = S_array - 4; + + for (i = 0; i < 64; i++) { + if ((i & 0x0f) == 0) + ps += 4; + temp = A; + switch (i >> 4) { + case 0: + temp += FF(B, C, D); + break; + case 1: + temp += FG(B, C, D); + break; + case 2: + temp += FH(B, C, D); + break; + case 3: + temp += FI(B, C, D); + } + temp += words[(int) (*pp++)] + *pc++; + temp = rotl32(temp, ps[i & 3]); + temp += B; + A = D; + D = C; + C = B; + B = temp; + } +# else /* MD5_SIZE_VS_SPEED == 2 */ + pc = C_array; + pp = P_array; + ps = S_array; + + for (i = 0; i < 16; i++) { + temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++; + temp = rotl32(temp, ps[i & 3]); + temp += B; + A = D; + D = C; + C = B; + B = temp; + } + ps += 4; + for (i = 0; i < 16; i++) { + temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++; + temp = rotl32(temp, ps[i & 3]); + temp += B; + A = D; + D = C; + C = B; + B = temp; + } + ps += 4; + for (i = 0; i < 16; i++) { + temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++; + temp = rotl32(temp, ps[i & 3]); + temp += B; + A = D; + D = C; + C = B; + B = temp; + } + ps += 4; + for (i = 0; i < 16; i++) { + temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++; + temp = rotl32(temp, ps[i & 3]); + temp += B; + A = D; + D = C; + C = B; + B = temp; + } +# endif + /* Add checksum to the starting values */ + ctx->A += A; + ctx->B += B; + ctx->C += C; + ctx->D += D; + +#else /* MD5_SIZE_VS_SPEED == 0 or 1 */ + + uint32_t A_save = A; + uint32_t B_save = B; + uint32_t C_save = C; + uint32_t D_save = D; +# if MD5_SIZE_VS_SPEED == 1 + const uint32_t *pc; + const char *pp; + int i; +# endif + + /* First round: using the given function, the context and a constant + the next context is computed. Because the algorithm's processing + unit is a 32-bit word and it is determined to work on words in + little endian byte order we perhaps have to change the byte order + before the computation. To reduce the work for the next steps + we save swapped words in WORDS array. */ +# undef OP +# define OP(a, b, c, d, s, T) \ + do { \ + a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \ + words++; \ + a = rotl32(a, s); \ + a += b; \ + } while (0) + + /* Round 1 */ +# if MD5_SIZE_VS_SPEED == 1 + pc = C_array; + for (i = 0; i < 4; i++) { + OP(A, B, C, D, 7, *pc++); + OP(D, A, B, C, 12, *pc++); + OP(C, D, A, B, 17, *pc++); + OP(B, C, D, A, 22, *pc++); + } +# else + OP(A, B, C, D, 7, 0xd76aa478); + OP(D, A, B, C, 12, 0xe8c7b756); + OP(C, D, A, B, 17, 0x242070db); + OP(B, C, D, A, 22, 0xc1bdceee); + OP(A, B, C, D, 7, 0xf57c0faf); + OP(D, A, B, C, 12, 0x4787c62a); + OP(C, D, A, B, 17, 0xa8304613); + OP(B, C, D, A, 22, 0xfd469501); + OP(A, B, C, D, 7, 0x698098d8); + OP(D, A, B, C, 12, 0x8b44f7af); + OP(C, D, A, B, 17, 0xffff5bb1); + OP(B, C, D, A, 22, 0x895cd7be); + OP(A, B, C, D, 7, 0x6b901122); + OP(D, A, B, C, 12, 0xfd987193); + OP(C, D, A, B, 17, 0xa679438e); + OP(B, C, D, A, 22, 0x49b40821); +# endif + words -= 16; + + /* For the second to fourth round we have the possibly swapped words + in WORDS. Redefine the macro to take an additional first + argument specifying the function to use. */ +# undef OP +# define OP(f, a, b, c, d, k, s, T) \ + do { \ + a += f(b, c, d) + words[k] + T; \ + a = rotl32(a, s); \ + a += b; \ + } while (0) + + /* Round 2 */ +# if MD5_SIZE_VS_SPEED == 1 + pp = P_array; + for (i = 0; i < 4; i++) { + OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++); + OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++); + OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++); + OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++); + } +# else + OP(FG, A, B, C, D, 1, 5, 0xf61e2562); + OP(FG, D, A, B, C, 6, 9, 0xc040b340); + OP(FG, C, D, A, B, 11, 14, 0x265e5a51); + OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa); + OP(FG, A, B, C, D, 5, 5, 0xd62f105d); + OP(FG, D, A, B, C, 10, 9, 0x02441453); + OP(FG, C, D, A, B, 15, 14, 0xd8a1e681); + OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8); + OP(FG, A, B, C, D, 9, 5, 0x21e1cde6); + OP(FG, D, A, B, C, 14, 9, 0xc33707d6); + OP(FG, C, D, A, B, 3, 14, 0xf4d50d87); + OP(FG, B, C, D, A, 8, 20, 0x455a14ed); + OP(FG, A, B, C, D, 13, 5, 0xa9e3e905); + OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8); + OP(FG, C, D, A, B, 7, 14, 0x676f02d9); + OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a); +# endif + + /* Round 3 */ +# if MD5_SIZE_VS_SPEED == 1 + for (i = 0; i < 4; i++) { + OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++); + OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++); + OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++); + OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++); + } +# else + OP(FH, A, B, C, D, 5, 4, 0xfffa3942); + OP(FH, D, A, B, C, 8, 11, 0x8771f681); + OP(FH, C, D, A, B, 11, 16, 0x6d9d6122); + OP(FH, B, C, D, A, 14, 23, 0xfde5380c); + OP(FH, A, B, C, D, 1, 4, 0xa4beea44); + OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9); + OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60); + OP(FH, B, C, D, A, 10, 23, 0xbebfbc70); + OP(FH, A, B, C, D, 13, 4, 0x289b7ec6); + OP(FH, D, A, B, C, 0, 11, 0xeaa127fa); + OP(FH, C, D, A, B, 3, 16, 0xd4ef3085); + OP(FH, B, C, D, A, 6, 23, 0x04881d05); + OP(FH, A, B, C, D, 9, 4, 0xd9d4d039); + OP(FH, D, A, B, C, 12, 11, 0xe6db99e5); + OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8); + OP(FH, B, C, D, A, 2, 23, 0xc4ac5665); +# endif + + /* Round 4 */ +# if MD5_SIZE_VS_SPEED == 1 + for (i = 0; i < 4; i++) { + OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++); + OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++); + OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++); + OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++); + } +# else + OP(FI, A, B, C, D, 0, 6, 0xf4292244); + OP(FI, D, A, B, C, 7, 10, 0x432aff97); + OP(FI, C, D, A, B, 14, 15, 0xab9423a7); + OP(FI, B, C, D, A, 5, 21, 0xfc93a039); + OP(FI, A, B, C, D, 12, 6, 0x655b59c3); + OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92); + OP(FI, C, D, A, B, 10, 15, 0xffeff47d); + OP(FI, B, C, D, A, 1, 21, 0x85845dd1); + OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f); + OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0); + OP(FI, C, D, A, B, 6, 15, 0xa3014314); + OP(FI, B, C, D, A, 13, 21, 0x4e0811a1); + OP(FI, A, B, C, D, 4, 6, 0xf7537e82); + OP(FI, D, A, B, C, 11, 10, 0xbd3af235); + OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb); + OP(FI, B, C, D, A, 9, 21, 0xeb86d391); +# undef OP +# endif + /* Add checksum to the starting values */ + ctx->A = A_save + A; + ctx->B = B_save + B; + ctx->C = C_save + C; + ctx->D = D_save + D; +#endif +} +#undef FF +#undef FG +#undef FH +#undef FI + +/* Feed data through a temporary buffer to call md5_hash_aligned_block() + * with chunks of data that are 4-byte aligned and a multiple of 64 bytes. + * This function's internal buffer remembers previous data until it has 64 + * bytes worth to pass on. Call md5_end() to flush this buffer. */ +void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len) +{ + unsigned bufpos = ctx->total64 & 63; + unsigned remaining; + + /* RFC 1321 specifies the possible length of the file up to 2^64 bits. + * Here we only track the number of bytes. */ + ctx->total64 += len; +#if 0 + remaining = 64 - bufpos; + + /* Hash whole blocks */ + while (len >= remaining) { + memcpy(ctx->wbuffer + bufpos, buffer, remaining); + buffer = (const char *)buffer + remaining; + len -= remaining; + remaining = 64; + bufpos = 0; + md5_process_block64(ctx); + } + + /* Save last, partial blosk */ + memcpy(ctx->wbuffer + bufpos, buffer, len); +#else + /* Tiny bit smaller code */ + while (1) { + remaining = 64 - bufpos; + if (remaining > len) + remaining = len; + /* Copy data into aligned buffer */ + memcpy(ctx->wbuffer + bufpos, buffer, remaining); + len -= remaining; + buffer = (const char *)buffer + remaining; + bufpos += remaining; + /* clever way to do "if (bufpos != 64) break; ... ; bufpos = 0;" */ + bufpos -= 64; + if (bufpos != 0) + break; + /* Buffer is filled up, process it */ + md5_process_block64(ctx); + /*bufpos = 0; - already is */ + } +#endif +} + +/* Process the remaining bytes in the buffer and put result from CTX + * in first 16 bytes following RESBUF. The result is always in little + * endian byte order, so that a byte-wise output yields to the wanted + * ASCII representation of the message digest. + */ +void FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf) +{ + unsigned bufpos = ctx->total64 & 63; + /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */ + ctx->wbuffer[bufpos++] = 0x80; + + /* This loop iterates either once or twice, no more, no less */ + while (1) { + unsigned remaining = 64 - bufpos; + memset(ctx->wbuffer + bufpos, 0, remaining); + /* Do we have enough space for the length count? */ + if (remaining >= 8) { + /* Store the 64-bit counter of bits in the buffer in LE format */ + uint64_t t = ctx->total64 << 3; + t = SWAP_LE64(t); + /* wbuffer is suitably aligned for this */ + *(uint64_t *) (&ctx->wbuffer[64 - 8]) = t; + } + md5_process_block64(ctx); + if (remaining >= 8) + break; + bufpos = 0; + } + + /* The MD5 result is in little endian byte order. + * We (ab)use the fact that A-D are consecutive in memory. + */ +#if BB_BIG_ENDIAN + ctx->A = SWAP_LE32(ctx->A); + ctx->B = SWAP_LE32(ctx->B); + ctx->C = SWAP_LE32(ctx->C); + ctx->D = SWAP_LE32(ctx->D); +#endif + memcpy(resbuf, &ctx->A, sizeof(ctx->A) * 4); +} |