diff options
-rw-r--r-- | networking/tls_sp_c32.c | 178 |
1 files changed, 72 insertions, 106 deletions
diff --git a/networking/tls_sp_c32.c b/networking/tls_sp_c32.c index 3291b55..3452b08 100644 --- a/networking/tls_sp_c32.c +++ b/networking/tls_sp_c32.c @@ -49,9 +49,9 @@ typedef int32_t signed_sp_digit; */ typedef struct sp_point { - sp_digit x[2 * 8]; - sp_digit y[2 * 8]; - sp_digit z[2 * 8]; + sp_digit x[8]; + sp_digit y[8]; + sp_digit z[8]; int infinity; } sp_point; @@ -456,12 +456,11 @@ static void sp_256_sub_8_p256_mod(sp_digit* r) #endif /* Multiply a and b into r. (r = a * b) - * r should be [16] array (512 bits). + * r should be [16] array (512 bits), and must not coincide with a or b. */ static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b) { #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__) - sp_digit rr[15]; /* in case r coincides with a or b */ int k; uint32_t accl; uint32_t acch; @@ -493,16 +492,15 @@ static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b) j--; i++; } while (i != 8 && i <= k); - rr[k] = accl; + r[k] = accl; accl = acch; acch = acc_hi; } r[15] = accl; - memcpy(r, rr, sizeof(rr)); #elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__) const uint64_t* aa = (const void*)a; const uint64_t* bb = (const void*)b; - uint64_t rr[8]; + const uint64_t* rr = (const void*)r; int k; uint64_t accl; uint64_t acch; @@ -539,11 +537,8 @@ static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b) acch = acc_hi; } rr[7] = accl; - memcpy(r, rr, sizeof(rr)); #elif 0 //TODO: arm assembly (untested) - sp_digit tmp[16]; - asm volatile ( "\n mov r5, #0" "\n mov r6, #0" @@ -575,12 +570,10 @@ static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b) "\n cmp r5, #56" "\n ble 1b" "\n str r6, [%[r], r5]" - : [r] "r" (tmp), [a] "r" (a), [b] "r" (b) + : [r] "r" (r), [a] "r" (a), [b] "r" (b) : "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r12", "r14" ); - memcpy(r, tmp, sizeof(tmp)); #else - sp_digit rr[15]; /* in case r coincides with a or b */ int i, j, k; uint64_t acc; @@ -600,11 +593,10 @@ static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b) j--; i++; } while (i != 8 && i <= k); - rr[k] = acc; + r[k] = acc; acc = (acc >> 32) | ((uint64_t)acc_hi << 32); } r[15] = acc; - memcpy(r, rr, sizeof(rr)); #endif } @@ -709,30 +701,11 @@ static void sp_256_mont_tpl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* } /* Shift the result in the high 256 bits down to the bottom. - * High half is cleared to zeros. */ -#if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff -static void sp_512to256_mont_shift_8(sp_digit* rr) +static void sp_512to256_mont_shift_8(sp_digit* r, sp_digit* a) { - uint64_t *r = (void*)rr; - int i; - - for (i = 0; i < 4; i++) { - r[i] = r[i+4]; - r[i+4] = 0; - } + memcpy(r, a + 8, sizeof(*r) * 8); } -#else -static void sp_512to256_mont_shift_8(sp_digit* r) -{ - int i; - - for (i = 0; i < 8; i++) { - r[i] = r[i+8]; - r[i+8] = 0; - } -} -#endif /* Mul a by scalar b and add into r. (r += a * b) * a = p256_mod @@ -868,11 +841,12 @@ static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/) * Note: the result is NOT guaranteed to be less than p256_mod! * (it is only guaranteed to fit into 256 bits). * - * a Double-wide number to reduce in place. + * r Result. + * a Double-wide number to reduce. Clobbered. * m The single precision number representing the modulus. * mp The digit representing the negative inverse of m mod 2^n. */ -static void sp_512to256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/) +static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* a/*, const sp_digit* m, sp_digit mp*/) { // const sp_digit* m = p256_mod; sp_digit mp = p256_mp_mod; @@ -895,10 +869,10 @@ static void sp_512to256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit goto inc_next_word0; } } - sp_512to256_mont_shift_8(a); + sp_512to256_mont_shift_8(r, a); if (word16th != 0) - sp_256_sub_8_p256_mod(a); - sp_256_norm_8(a); + sp_256_sub_8_p256_mod(r); + sp_256_norm_8(r); } else { /* Same code for explicit mp == 1 (which is always the case for P256) */ sp_digit word16th = 0; @@ -915,10 +889,10 @@ static void sp_512to256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit goto inc_next_word; } } - sp_512to256_mont_shift_8(a); + sp_512to256_mont_shift_8(r, a); if (word16th != 0) - sp_256_sub_8_p256_mod(a); - sp_256_norm_8(a); + sp_256_sub_8_p256_mod(r); + sp_256_norm_8(r); } } @@ -926,35 +900,34 @@ static void sp_512to256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit * (r = a * b mod m) * * r Result of multiplication. - * Should be [16] array (512 bits), but high half is cleared to zeros (used as scratch pad). * a First number to multiply in Montogmery form. * b Second number to multiply in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ -static void sp_256to512z_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b +static void sp_256_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b /*, const sp_digit* m, sp_digit mp*/) { //const sp_digit* m = p256_mod; //sp_digit mp = p256_mp_mod; - sp_256to512_mul_8(r, a, b); - sp_512to256_mont_reduce_8(r /*, m, mp*/); + sp_digit t[2 * 8]; + sp_256to512_mul_8(t, a, b); + sp_512to256_mont_reduce_8(r, t /*, m, mp*/); } /* Square the Montgomery form number. (r = a * a mod m) * * r Result of squaring. - * Should be [16] array (512 bits), but high half is cleared to zeros (used as scratch pad). * a Number to square in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ -static void sp_256to512z_mont_sqr_8(sp_digit* r, const sp_digit* a +static void sp_256_mont_sqr_8(sp_digit* r, const sp_digit* a /*, const sp_digit* m, sp_digit mp*/) { //const sp_digit* m = p256_mod; //sp_digit mp = p256_mp_mod; - sp_256to512z_mont_mul_8(r, a, a /*, m, mp*/); + sp_256_mont_mul_8(r, a, a /*, m, mp*/); } /* Invert the number, in Montgomery form, modulo the modulus (prime) of the @@ -964,11 +937,8 @@ static void sp_256to512z_mont_sqr_8(sp_digit* r, const sp_digit* a * a Number to invert. */ #if 0 -/* Mod-2 for the P256 curve. */ -static const uint32_t p256_mod_2[8] = { - 0xfffffffd,0xffffffff,0xffffffff,0x00000000, - 0x00000000,0x00000000,0x00000001,0xffffffff, -}; +//p256_mod - 2: +//ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff - 2 //Bit pattern: //2 2 2 2 2 2 2 1...1 //5 5 4 3 2 1 0 9...0 9...1 @@ -977,15 +947,15 @@ static const uint32_t p256_mod_2[8] = { #endif static void sp_256_mont_inv_8(sp_digit* r, sp_digit* a) { - sp_digit t[2*8]; + sp_digit t[8]; int i; memcpy(t, a, sizeof(sp_digit) * 8); for (i = 254; i >= 0; i--) { - sp_256to512z_mont_sqr_8(t, t /*, p256_mod, p256_mp_mod*/); + sp_256_mont_sqr_8(t, t /*, p256_mod, p256_mp_mod*/); /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/ if (i >= 224 || i == 192 || (i <= 95 && i != 1)) - sp_256to512z_mont_mul_8(t, t, a /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t, t, a /*, p256_mod, p256_mp_mod*/); } memcpy(r, t, sizeof(sp_digit) * 8); } @@ -1056,25 +1026,28 @@ static void sp_256_mod_mul_norm_8(sp_digit* r, const sp_digit* a) */ static void sp_256_map_8(sp_point* r, sp_point* p) { - sp_digit t1[2*8]; - sp_digit t2[2*8]; + sp_digit t1[8]; + sp_digit t2[8]; + sp_digit rr[2 * 8]; sp_256_mont_inv_8(t1, p->z); - sp_256to512z_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/); - sp_256to512z_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/); /* x /= z^2 */ - sp_256to512z_mont_mul_8(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/); - sp_512to256_mont_reduce_8(r->x /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(rr, p->x, t2 /*, p256_mod, p256_mp_mod*/); + memset(rr + 8, 0, sizeof(rr) / 2); + sp_512to256_mont_reduce_8(r->x, rr /*, p256_mod, p256_mp_mod*/); /* Reduce x to less than modulus */ if (sp_256_cmp_8(r->x, p256_mod) >= 0) sp_256_sub_8_p256_mod(r->x); sp_256_norm_8(r->x); /* y /= z^3 */ - sp_256to512z_mont_mul_8(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/); - sp_512to256_mont_reduce_8(r->y /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(rr, p->y, t1 /*, p256_mod, p256_mp_mod*/); + memset(rr + 8, 0, sizeof(rr) / 2); + sp_512to256_mont_reduce_8(r->y, rr /*, p256_mod, p256_mp_mod*/); /* Reduce y to less than modulus */ if (sp_256_cmp_8(r->y, p256_mod) >= 0) sp_256_sub_8_p256_mod(r->y); @@ -1091,8 +1064,8 @@ static void sp_256_map_8(sp_point* r, sp_point* p) */ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) { - sp_digit t1[2*8]; - sp_digit t2[2*8]; + sp_digit t1[8]; + sp_digit t2[8]; /* Put point to double into result */ if (r != p) @@ -1101,17 +1074,10 @@ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) if (r->infinity) return; - if (SP_DEBUG) { - /* unused part of t2, may result in spurios - * differences in debug output. Clear it. - */ - memset(t2, 0, sizeof(t2)); - } - /* T1 = Z * Z */ - sp_256to512z_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/); + sp_256_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/); /* Z = Y * Z */ - sp_256to512z_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/); /* Z = 2Z */ sp_256_mont_dbl_8(r->z, r->z /*, p256_mod*/); /* T2 = X - T1 */ @@ -1119,21 +1085,21 @@ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) /* T1 = X + T1 */ sp_256_mont_add_8(t1, r->x, t1 /*, p256_mod*/); /* T2 = T1 * T2 */ - sp_256to512z_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/); /* T1 = 3T2 */ sp_256_mont_tpl_8(t1, t2 /*, p256_mod*/); /* Y = 2Y */ sp_256_mont_dbl_8(r->y, r->y /*, p256_mod*/); /* Y = Y * Y */ - sp_256to512z_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/); + sp_256_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/); /* T2 = Y * Y */ - sp_256to512z_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/); + sp_256_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/); /* T2 = T2/2 */ sp_256_div2_8(t2 /*, p256_mod*/); /* Y = Y * X */ - sp_256to512z_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/); /* X = T1 * T1 */ - sp_256to512z_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/); /* X = X - Y */ sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/); /* X = X - Y */ @@ -1141,7 +1107,7 @@ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) /* Y = Y - X */ sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/); /* Y = Y * T1 */ - sp_256to512z_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/); /* Y = Y - T2 */ sp_256_mont_sub_8(r->y, r->y, t2 /*, p256_mod*/); dump_512("y2 %s\n", r->y); @@ -1155,11 +1121,11 @@ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) */ static NOINLINE void sp_256_proj_point_add_8(sp_point* r, sp_point* p, sp_point* q) { - sp_digit t1[2*8]; - sp_digit t2[2*8]; - sp_digit t3[2*8]; - sp_digit t4[2*8]; - sp_digit t5[2*8]; + sp_digit t1[8]; + sp_digit t2[8]; + sp_digit t3[8]; + sp_digit t4[8]; + sp_digit t5[8]; /* Ensure only the first point is the same as the result. */ if (q == r) { @@ -1186,36 +1152,36 @@ static NOINLINE void sp_256_proj_point_add_8(sp_point* r, sp_point* p, sp_point* } /* U1 = X1*Z2^2 */ - sp_256to512z_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/); - sp_256to512z_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/); - sp_256to512z_mont_mul_8(t1, t1, r->x /*, p256_mod, p256_mp_mod*/); + sp_256_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t1, t1, r->x /*, p256_mod, p256_mp_mod*/); /* U2 = X2*Z1^2 */ - sp_256to512z_mont_sqr_8(t2, r->z /*, p256_mod, p256_mp_mod*/); - sp_256to512z_mont_mul_8(t4, t2, r->z /*, p256_mod, p256_mp_mod*/); - sp_256to512z_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/); + sp_256_mont_sqr_8(t2, r->z /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t4, t2, r->z /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/); /* S1 = Y1*Z2^3 */ - sp_256to512z_mont_mul_8(t3, t3, r->y /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t3, t3, r->y /*, p256_mod, p256_mp_mod*/); /* S2 = Y2*Z1^3 */ - sp_256to512z_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/); /* H = U2 - U1 */ sp_256_mont_sub_8(t2, t2, t1 /*, p256_mod*/); /* R = S2 - S1 */ sp_256_mont_sub_8(t4, t4, t3 /*, p256_mod*/); /* Z3 = H*Z1*Z2 */ - sp_256to512z_mont_mul_8(r->z, r->z, q->z /*, p256_mod, p256_mp_mod*/); - sp_256to512z_mont_mul_8(r->z, r->z, t2 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(r->z, r->z, q->z /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(r->z, r->z, t2 /*, p256_mod, p256_mp_mod*/); /* X3 = R^2 - H^3 - 2*U1*H^2 */ - sp_256to512z_mont_sqr_8(r->x, t4 /*, p256_mod, p256_mp_mod*/); - sp_256to512z_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/); - sp_256to512z_mont_mul_8(r->y, t1, t5 /*, p256_mod, p256_mp_mod*/); - sp_256to512z_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_sqr_8(r->x, t4 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(r->y, t1, t5 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/); sp_256_mont_sub_8(r->x, r->x, t5 /*, p256_mod*/); sp_256_mont_dbl_8(t1, r->y /*, p256_mod*/); sp_256_mont_sub_8(r->x, r->x, t1 /*, p256_mod*/); /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/); - sp_256to512z_mont_mul_8(r->y, r->y, t4 /*, p256_mod, p256_mp_mod*/); - sp_256to512z_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(r->y, r->y, t4 /*, p256_mod, p256_mp_mod*/); + sp_256_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/); sp_256_mont_sub_8(r->y, r->y, t5 /*, p256_mod*/); } |