diff options
-rw-r--r-- | networking/tls_sp_c32.c | 358 |
1 files changed, 179 insertions, 179 deletions
diff --git a/networking/tls_sp_c32.c b/networking/tls_sp_c32.c index 1f14031..8059f6e 100644 --- a/networking/tls_sp_c32.c +++ b/networking/tls_sp_c32.c @@ -220,106 +220,6 @@ static void sp_256_rshift1_10(sp_digit* r, sp_digit* a) r[9] = a[9] >> 1; } -/* Multiply a number by Montogmery normalizer mod modulus (prime). - * - * r The resulting Montgomery form number. - * a The number to convert. - */ -static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a) -{ - int64_t t[8]; - int64_t a32[8]; - int64_t o; - - a32[0] = a[0]; - a32[0] |= a[1] << 26; - a32[0] &= 0xffffffff; - a32[1] = (sp_digit)(a[1] >> 6); - a32[1] |= a[2] << 20; - a32[1] &= 0xffffffff; - a32[2] = (sp_digit)(a[2] >> 12); - a32[2] |= a[3] << 14; - a32[2] &= 0xffffffff; - a32[3] = (sp_digit)(a[3] >> 18); - a32[3] |= a[4] << 8; - a32[3] &= 0xffffffff; - a32[4] = (sp_digit)(a[4] >> 24); - a32[4] |= a[5] << 2; - a32[4] |= a[6] << 28; - a32[4] &= 0xffffffff; - a32[5] = (sp_digit)(a[6] >> 4); - a32[5] |= a[7] << 22; - a32[5] &= 0xffffffff; - a32[6] = (sp_digit)(a[7] >> 10); - a32[6] |= a[8] << 16; - a32[6] &= 0xffffffff; - a32[7] = (sp_digit)(a[8] >> 16); - a32[7] |= a[9] << 10; - a32[7] &= 0xffffffff; - - /* 1 1 0 -1 -1 -1 -1 0 */ - t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6]; - /* 0 1 1 0 -1 -1 -1 -1 */ - t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7]; - /* 0 0 1 1 0 -1 -1 -1 */ - t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7]; - /* -1 -1 0 2 2 1 0 -1 */ - t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7]; - /* 0 -1 -1 0 2 2 1 0 */ - t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6]; - /* 0 0 -1 -1 0 2 2 1 */ - t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7]; - /* -1 -1 0 0 0 1 3 2 */ - t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7]; - /* 1 0 -1 -1 -1 -1 0 3 */ - t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7]; - - t[1] += t[0] >> 32; t[0] &= 0xffffffff; - t[2] += t[1] >> 32; t[1] &= 0xffffffff; - t[3] += t[2] >> 32; t[2] &= 0xffffffff; - t[4] += t[3] >> 32; t[3] &= 0xffffffff; - t[5] += t[4] >> 32; t[4] &= 0xffffffff; - t[6] += t[5] >> 32; t[5] &= 0xffffffff; - t[7] += t[6] >> 32; t[6] &= 0xffffffff; - o = t[7] >> 32; t[7] &= 0xffffffff; - t[0] += o; - t[3] -= o; - t[6] -= o; - t[7] += o; - t[1] += t[0] >> 32; t[0] &= 0xffffffff; - t[2] += t[1] >> 32; t[1] &= 0xffffffff; - t[3] += t[2] >> 32; t[2] &= 0xffffffff; - t[4] += t[3] >> 32; t[3] &= 0xffffffff; - t[5] += t[4] >> 32; t[4] &= 0xffffffff; - t[6] += t[5] >> 32; t[5] &= 0xffffffff; - t[7] += t[6] >> 32; t[6] &= 0xffffffff; - - r[0] = (sp_digit)(t[0]) & 0x3ffffff; - r[1] = (sp_digit)(t[0] >> 26); - r[1] |= t[1] << 6; - r[1] &= 0x3ffffff; - r[2] = (sp_digit)(t[1] >> 20); - r[2] |= t[2] << 12; - r[2] &= 0x3ffffff; - r[3] = (sp_digit)(t[2] >> 14); - r[3] |= t[3] << 18; - r[3] &= 0x3ffffff; - r[4] = (sp_digit)(t[3] >> 8); - r[4] |= t[4] << 24; - r[4] &= 0x3ffffff; - r[5] = (sp_digit)(t[4] >> 2) & 0x3ffffff; - r[6] = (sp_digit)(t[4] >> 28); - r[6] |= t[5] << 4; - r[6] &= 0x3ffffff; - r[7] = (sp_digit)(t[5] >> 22); - r[7] |= t[6] << 10; - r[7] &= 0x3ffffff; - r[8] = (sp_digit)(t[6] >> 16); - r[8] |= t[7] << 16; - r[8] &= 0x3ffffff; - r[9] = (sp_digit)(t[7] >> 10); -} - /* Mul a by scalar b and add into r. (r += a * b) */ static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b) { @@ -335,6 +235,58 @@ static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b) r[10] += t; } +/* Multiply a and b into r. (r = a * b) */ +static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b) +{ + int i, j, k; + int64_t c; + + c = ((int64_t)a[9]) * b[9]; + r[19] = (sp_digit)(c >> 26); + c = (c & 0x3ffffff) << 26; + for (k = 17; k >= 0; k--) { + for (i = 9; i >= 0; i--) { + j = k - i; + if (j >= 10) + break; + if (j < 0) + continue; + c += ((int64_t)a[i]) * b[j]; + } + r[k + 2] += c >> 52; + r[k + 1] = (c >> 26) & 0x3ffffff; + c = (c & 0x3ffffff) << 26; + } + r[0] = (sp_digit)(c >> 26); +} + +/* Square a and put result in r. (r = a * a) */ +static void sp_256_sqr_10(sp_digit* r, const sp_digit* a) +{ + int i, j, k; + int64_t c; + + c = ((int64_t)a[9]) * a[9]; + r[19] = (sp_digit)(c >> 26); + c = (c & 0x3ffffff) << 26; + for (k = 17; k >= 0; k--) { + for (i = 9; i >= 0; i--) { + j = k - i; + if (j >= 10 || i <= j) + break; + if (j < 0) + continue; + c += ((int64_t)a[i]) * a[j] * 2; + } + if (i == j) + c += ((int64_t)a[i]) * a[i]; + r[k + 2] += c >> 52; + r[k + 1] = (c >> 26) & 0x3ffffff; + c = (c & 0x3ffffff) << 26; + } + r[0] = (sp_digit)(c >> 26); +} + /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */ static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m) { @@ -344,25 +296,6 @@ static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m) sp_256_rshift1_10(r, r); } -/* Shift the result in the high 256 bits down to the bottom. */ -static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a) -{ - int i; - sp_digit n, s; - - s = a[10]; - n = a[9] >> 22; - for (i = 0; i < 9; i++) { - n += (s & 0x3ffffff) << 4; - r[i] = n & 0x3ffffff; - n >>= 26; - s = a[11 + i] + (s >> 26); - } - n += s << 4; - r[9] = n; - memset(&r[10], 0, sizeof(*r) * 10); -} - /* Add two Montgomery form numbers (r = a + b % m) */ static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit* m) @@ -374,6 +307,16 @@ static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b sp_256_norm_10(r); } +/* Subtract two Montgomery form numbers (r = a - b % m) */ +static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b, + const sp_digit* m) +{ + sp_256_sub_10(r, a, b); + if (r[9] >> 22) + sp_256_add_10(r, r, m); + sp_256_norm_10(r); +} + /* Double a Montgomery form number (r = a + a % m) */ static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) { @@ -399,14 +342,23 @@ static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m sp_256_norm_10(r); } -/* Subtract two Montgomery form numbers (r = a - b % m) */ -static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b, - const sp_digit* m) +/* Shift the result in the high 256 bits down to the bottom. */ +static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a) { - sp_256_sub_10(r, a, b); - if (r[9] >> 22) - sp_256_add_10(r, r, m); - sp_256_norm_10(r); + int i; + sp_digit n, s; + + s = a[10]; + n = a[9] >> 22; + for (i = 0; i < 9; i++) { + n += (s & 0x3ffffff) << 4; + r[i] = n & 0x3ffffff; + n >>= 26; + s = a[11 + i] + (s >> 26); + } + n += s << 4; + r[9] = n; + memset(&r[10], 0, sizeof(*r) * 10); } /* Reduce the number back to 256 bits using Montgomery reduction. @@ -449,31 +401,6 @@ static void sp_256_mont_reduce_10(sp_digit* a, const sp_digit* m, sp_digit mp) sp_256_norm_10(a); } -/* Multiply a and b into r. (r = a * b) */ -static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b) -{ - int i, j, k; - int64_t c; - - c = ((int64_t)a[9]) * b[9]; - r[19] = (sp_digit)(c >> 26); - c = (c & 0x3ffffff) << 26; - for (k = 17; k >= 0; k--) { - for (i = 9; i >= 0; i--) { - j = k - i; - if (j >= 10) - break; - if (j < 0) - continue; - c += ((int64_t)a[i]) * b[j]; - } - r[k + 2] += c >> 52; - r[k + 1] = (c >> 26) & 0x3ffffff; - c = (c & 0x3ffffff) << 26; - } - r[0] = (sp_digit)(c >> 26); -} - /* Multiply two Montogmery form numbers mod the modulus (prime). * (r = a * b mod m) * @@ -490,33 +417,6 @@ static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b sp_256_mont_reduce_10(r, m, mp); } -/* Square a and put result in r. (r = a * a) */ -static void sp_256_sqr_10(sp_digit* r, const sp_digit* a) -{ - int i, j, k; - int64_t c; - - c = ((int64_t)a[9]) * a[9]; - r[19] = (sp_digit)(c >> 26); - c = (c & 0x3ffffff) << 26; - for (k = 17; k >= 0; k--) { - for (i = 9; i >= 0; i--) { - j = k - i; - if (j >= 10 || i <= j) - break; - if (j < 0) - continue; - c += ((int64_t)a[i]) * a[j] * 2; - } - if (i == j) - c += ((int64_t)a[i]) * a[i]; - r[k + 2] += c >> 52; - r[k + 1] = (c >> 26) & 0x3ffffff; - c = (c & 0x3ffffff) << 26; - } - r[0] = (sp_digit)(c >> 26); -} - /* Square the Montgomery form number. (r = a * a mod m) * * r Result of squaring. @@ -564,6 +464,106 @@ static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a) memcpy(r, t, sizeof(sp_digit) * 10); } +/* Multiply a number by Montogmery normalizer mod modulus (prime). + * + * r The resulting Montgomery form number. + * a The number to convert. + */ +static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a) +{ + int64_t t[8]; + int64_t a32[8]; + int64_t o; + + a32[0] = a[0]; + a32[0] |= a[1] << 26; + a32[0] &= 0xffffffff; + a32[1] = (sp_digit)(a[1] >> 6); + a32[1] |= a[2] << 20; + a32[1] &= 0xffffffff; + a32[2] = (sp_digit)(a[2] >> 12); + a32[2] |= a[3] << 14; + a32[2] &= 0xffffffff; + a32[3] = (sp_digit)(a[3] >> 18); + a32[3] |= a[4] << 8; + a32[3] &= 0xffffffff; + a32[4] = (sp_digit)(a[4] >> 24); + a32[4] |= a[5] << 2; + a32[4] |= a[6] << 28; + a32[4] &= 0xffffffff; + a32[5] = (sp_digit)(a[6] >> 4); + a32[5] |= a[7] << 22; + a32[5] &= 0xffffffff; + a32[6] = (sp_digit)(a[7] >> 10); + a32[6] |= a[8] << 16; + a32[6] &= 0xffffffff; + a32[7] = (sp_digit)(a[8] >> 16); + a32[7] |= a[9] << 10; + a32[7] &= 0xffffffff; + + /* 1 1 0 -1 -1 -1 -1 0 */ + t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6]; + /* 0 1 1 0 -1 -1 -1 -1 */ + t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7]; + /* 0 0 1 1 0 -1 -1 -1 */ + t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7]; + /* -1 -1 0 2 2 1 0 -1 */ + t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7]; + /* 0 -1 -1 0 2 2 1 0 */ + t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6]; + /* 0 0 -1 -1 0 2 2 1 */ + t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7]; + /* -1 -1 0 0 0 1 3 2 */ + t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7]; + /* 1 0 -1 -1 -1 -1 0 3 */ + t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7]; + + t[1] += t[0] >> 32; t[0] &= 0xffffffff; + t[2] += t[1] >> 32; t[1] &= 0xffffffff; + t[3] += t[2] >> 32; t[2] &= 0xffffffff; + t[4] += t[3] >> 32; t[3] &= 0xffffffff; + t[5] += t[4] >> 32; t[4] &= 0xffffffff; + t[6] += t[5] >> 32; t[5] &= 0xffffffff; + t[7] += t[6] >> 32; t[6] &= 0xffffffff; + o = t[7] >> 32; t[7] &= 0xffffffff; + t[0] += o; + t[3] -= o; + t[6] -= o; + t[7] += o; + t[1] += t[0] >> 32; t[0] &= 0xffffffff; + t[2] += t[1] >> 32; t[1] &= 0xffffffff; + t[3] += t[2] >> 32; t[2] &= 0xffffffff; + t[4] += t[3] >> 32; t[3] &= 0xffffffff; + t[5] += t[4] >> 32; t[4] &= 0xffffffff; + t[6] += t[5] >> 32; t[5] &= 0xffffffff; + t[7] += t[6] >> 32; t[6] &= 0xffffffff; + + r[0] = (sp_digit)(t[0]) & 0x3ffffff; + r[1] = (sp_digit)(t[0] >> 26); + r[1] |= t[1] << 6; + r[1] &= 0x3ffffff; + r[2] = (sp_digit)(t[1] >> 20); + r[2] |= t[2] << 12; + r[2] &= 0x3ffffff; + r[3] = (sp_digit)(t[2] >> 14); + r[3] |= t[3] << 18; + r[3] &= 0x3ffffff; + r[4] = (sp_digit)(t[3] >> 8); + r[4] |= t[4] << 24; + r[4] &= 0x3ffffff; + r[5] = (sp_digit)(t[4] >> 2) & 0x3ffffff; + r[6] = (sp_digit)(t[4] >> 28); + r[6] |= t[5] << 4; + r[6] &= 0x3ffffff; + r[7] = (sp_digit)(t[5] >> 22); + r[7] |= t[6] << 10; + r[7] &= 0x3ffffff; + r[8] = (sp_digit)(t[6] >> 16); + r[8] |= t[7] << 16; + r[8] &= 0x3ffffff; + r[9] = (sp_digit)(t[7] >> 10); +} + /* Map the Montgomery form projective co-ordinate point to an affine point. * * r Resulting affine co-ordinate point. @@ -808,7 +808,7 @@ static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/) * pub2x32 Point to multiply. * out32 Buffer to hold X ordinate. */ -static void sp_ecc_secret_gen_256(sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32) +static void sp_ecc_secret_gen_256(const sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32) { sp_point point[1]; |