summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--networking/tls.c256
-rw-r--r--networking/tls.h2
-rw-r--r--networking/tls_rsa.c2
3 files changed, 225 insertions, 35 deletions
diff --git a/networking/tls.c b/networking/tls.c
index 44c9da1..9bc75f8 100644
--- a/networking/tls.c
+++ b/networking/tls.c
@@ -146,6 +146,11 @@ typedef struct tls_state {
psRsaKey_t server_rsa_pub_key;
+ sha256_ctx_t handshake_sha256_ctx;
+
+ uint8_t client_and_server_rand32[2 * 32];
+ uint8_t master_secret[48];
+
// RFC 5246
// |6.2.1. Fragmentation
// | The record layer fragments information blocks into TLSPlaintext
@@ -187,9 +192,18 @@ tls_state_t *new_tls_state(void)
{
tls_state_t *tls = xzalloc(sizeof(*tls));
tls->fd = -1;
+ sha256_begin(&tls->handshake_sha256_ctx);
return tls;
}
+static void xwrite_and_hash(tls_state_t *tls, const void *buf, unsigned size)
+{
+ xwrite(tls->fd, buf, size);
+ /* hash does not include record headers */
+ if (size > 5)
+ sha256_hash(&tls->handshake_sha256_ctx, (uint8_t*)buf + 5, size - 5);
+}
+
static unsigned get24be(const uint8_t *p)
{
return 0x100*(0x100*p[0] + p[1]) + p[2];
@@ -494,6 +508,156 @@ static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len)
dbg("server_rsa_pub_key.size:%d\n", tls->server_rsa_pub_key.size);
}
+enum {
+ SHA256_INSIZE = 64,
+ SHA256_OUTSIZE = 32,
+};
+
+static void hash_sha256(uint8_t out[SHA256_OUTSIZE], const void *data, unsigned size)
+{
+ sha256_ctx_t ctx;
+ sha256_begin(&ctx);
+ sha256_hash(&ctx, data, size);
+ sha256_end(&ctx, out);
+}
+
+// RFC 2104: HMAC(key, text) based on a hash H (say, sha256) is:
+// ipad = [0x36 x INSIZE]
+// opad = [0x5c x INSIZE]
+// HMAC(key, text) = H((key XOR opad) + H((key XOR ipad) + text))
+//
+// H(key XOR opad) and H(key XOR ipad) can be precomputed
+// if we often need HMAC hmac with the same key.
+//
+// text is often given in disjoint pieces.
+static void hmac_sha256_precomputed_v(uint8_t out[SHA256_OUTSIZE],
+ sha256_ctx_t *hashed_key_xor_ipad,
+ sha256_ctx_t *hashed_key_xor_opad,
+ va_list va)
+{
+ uint8_t *text;
+
+ /* hashed_key_xor_ipad contains unclosed "H((key XOR ipad) +" state */
+ /* hashed_key_xor_opad contains unclosed "H((key XOR opad) +" state */
+
+ /* calculate out = H((key XOR ipad) + text) */
+ while ((text = va_arg(va, uint8_t*)) != NULL) {
+ unsigned text_size = va_arg(va, unsigned);
+ sha256_hash(hashed_key_xor_ipad, text, text_size);
+ }
+ sha256_end(hashed_key_xor_ipad, out);
+
+ /* out = H((key XOR opad) + out) */
+ sha256_hash(hashed_key_xor_opad, out, SHA256_OUTSIZE);
+ sha256_end(hashed_key_xor_opad, out);
+}
+
+static void hmac_sha256(uint8_t out[SHA256_OUTSIZE], uint8_t *key, unsigned key_size, ...)
+{
+ sha256_ctx_t hashed_key_xor_ipad;
+ sha256_ctx_t hashed_key_xor_opad;
+ uint8_t key_xor_ipad[SHA256_INSIZE];
+ uint8_t key_xor_opad[SHA256_INSIZE];
+ uint8_t tempkey[SHA256_OUTSIZE];
+ va_list va;
+ int i;
+
+ va_start(va, key_size);
+
+ // "The authentication key can be of any length up to INSIZE, the
+ // block length of the hash function. Applications that use keys longer
+ // than INSIZE bytes will first hash the key using H and then use the
+ // resultant OUTSIZE byte string as the actual key to HMAC."
+ if (key_size > SHA256_INSIZE) {
+ hash_sha256(tempkey, key, key_size);
+ key = tempkey;
+ key_size = SHA256_OUTSIZE;
+ }
+
+ for (i = 0; i < key_size; i++) {
+ key_xor_ipad[i] = key[i] ^ 0x36;
+ key_xor_opad[i] = key[i] ^ 0x5c;
+ }
+ for (; i < SHA256_INSIZE; i++) {
+ key_xor_ipad[i] = 0x36;
+ key_xor_opad[i] = 0x5c;
+ }
+ sha256_begin(&hashed_key_xor_ipad);
+ sha256_hash(&hashed_key_xor_ipad, key_xor_ipad, SHA256_INSIZE);
+ sha256_begin(&hashed_key_xor_opad);
+ sha256_hash(&hashed_key_xor_opad, key_xor_opad, SHA256_INSIZE);
+
+ hmac_sha256_precomputed_v(out, &hashed_key_xor_ipad, &hashed_key_xor_opad, va);
+ va_end(va);
+}
+
+// RFC 5246:
+// 5. HMAC and the Pseudorandom Function
+//...
+// In this section, we define one PRF, based on HMAC. This PRF with the
+// SHA-256 hash function is used for all cipher suites defined in this
+// document and in TLS documents published prior to this document when
+// TLS 1.2 is negotiated.
+//...
+// P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
+// HMAC_hash(secret, A(2) + seed) +
+// HMAC_hash(secret, A(3) + seed) + ...
+// where + indicates concatenation.
+// A() is defined as:
+// A(0) = seed
+// A(1) = HMAC_hash(secret, A(0)) = HMAC_hash(secret, seed)
+// A(i) = HMAC_hash(secret, A(i-1))
+// P_hash can be iterated as many times as necessary to produce the
+// required quantity of data. For example, if P_SHA256 is being used to
+// create 80 bytes of data, it will have to be iterated three times
+// (through A(3)), creating 96 bytes of output data; the last 16 bytes
+// of the final iteration will then be discarded, leaving 80 bytes of
+// output data.
+//
+// TLS's PRF is created by applying P_hash to the secret as:
+//
+// PRF(secret, label, seed) = P_<hash>(secret, label + seed)
+//
+// The label is an ASCII string.
+static void tls_prf_hmac_sha256(
+ uint8_t *outbuf, unsigned outbuf_size,
+ uint8_t *secret, unsigned secret_size,
+ const char *label,
+ uint8_t *seed, unsigned seed_size)
+{
+ uint8_t a[SHA256_OUTSIZE];
+ uint8_t *out_p = outbuf;
+ unsigned label_size = strlen(label);
+
+ /* In P_hash() calculation, "seed" is "label + seed": */
+#define SEED label, label_size, seed, seed_size
+#define SECRET secret, secret_size
+#define A a, (int)(sizeof(a))
+
+ /* A(1) = HMAC_hash(secret, seed) */
+ hmac_sha256(a, SECRET, SEED, NULL);
+
+ for(;;) {
+ /* HMAC_hash(secret, A(1) + seed) */
+ if (outbuf_size <= SHA256_OUTSIZE) {
+ /* Last, possibly incomplete, block */
+ /* (use a[] as temp buffer) */
+ hmac_sha256(a, SECRET, A, SEED, NULL);
+ memcpy(out_p, a, outbuf_size);
+ return;
+ }
+ /* Not last block. Store directly to result buffer */
+ hmac_sha256(out_p, SECRET, A, SEED, NULL);
+ out_p += SHA256_OUTSIZE;
+ outbuf_size -= SHA256_OUTSIZE;
+ /* A(2) = HMAC_hash(secret, A(1)) */
+ hmac_sha256(a, SECRET, A, NULL);
+ }
+#undef A
+#undef SECRET
+#undef SEED
+}
+
/*
* TLS Handshake routines
*/
@@ -535,7 +699,9 @@ static void send_client_hello(tls_state_t *tls)
hello.comprtypes_len = 1;
//hello.comprtypes[0] = 0;
- xwrite(tls->fd, &hello, sizeof(hello));
+ xwrite_and_hash(tls, &hello, sizeof(hello));
+ memcpy(tls->client_and_server_rand32, hello.rand32, sizeof(hello.rand32));
+
#if 0 /* dump */
for (;;) {
uint8_t buf[16*1024];
@@ -589,6 +755,7 @@ static void get_server_hello(tls_state_t *tls)
tls_error_die(tls);
}
dbg("got SERVER_HELLO\n");
+ memcpy(tls->client_and_server_rand32 + 32, hp->rand32, sizeof(hp->rand32));
}
static void get_server_cert(tls_state_t *tls)
@@ -665,7 +832,23 @@ static void send_client_key_exchange(tls_state_t *tls)
data_param_ignored
);
- xwrite(tls->fd, &record, sizeof(record));
+ xwrite_and_hash(tls, &record, sizeof(record));
+
+// RFC 5246
+// For all key exchange methods, the same algorithm is used to convert
+// the pre_master_secret into the master_secret. The pre_master_secret
+// should be deleted from memory once the master_secret has been
+// computed.
+// master_secret = PRF(pre_master_secret, "master secret",
+// ClientHello.random + ServerHello.random)
+// [0..47];
+// The master secret is always exactly 48 bytes in length. The length
+// of the premaster secret will vary depending on key exchange method.
+ tls_prf_hmac_sha256(tls->master_secret, sizeof(tls->master_secret),
+ rsa_premaster, sizeof(rsa_premaster),
+ "master secret",
+ tls->client_and_server_rand32, sizeof(tls->client_and_server_rand32)
+ );
}
static void send_change_cipher_spec(tls_state_t *tls)
@@ -674,42 +857,12 @@ static void send_change_cipher_spec(tls_state_t *tls)
RECORD_TYPE_CHANGE_CIPHER_SPEC, TLS_MAJ, TLS_MIN, 00, 01,
01
};
+ /* Not "xwrite_and_hash": this is not a handshake message */
xwrite(tls->fd, rec, sizeof(rec));
}
static void send_client_finished(tls_state_t *tls)
{
-// RFC 5246 on pseudorandom function (PRF):
-//
-// 5. HMAC and the Pseudorandom Function
-//...
-// In this section, we define one PRF, based on HMAC. This PRF with the
-// SHA-256 hash function is used for all cipher suites defined in this
-// document and in TLS documents published prior to this document when
-// TLS 1.2 is negotiated.
-//...
-// P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
-// HMAC_hash(secret, A(2) + seed) +
-// HMAC_hash(secret, A(3) + seed) + ...
-// where + indicates concatenation.
-// A() is defined as:
-// A(0) = seed
-// A(i) = HMAC_hash(secret, A(i-1))
-// P_hash can be iterated as many times as necessary to produce the
-// required quantity of data. For example, if P_SHA256 is being used to
-// create 80 bytes of data, it will have to be iterated three times
-// (through A(3)), creating 96 bytes of output data; the last 16 bytes
-// of the final iteration will then be discarded, leaving 80 bytes of
-// output data.
-//
-// TLS's PRF is created by applying P_hash to the secret as:
-//
-// PRF(secret, label, seed) = P_<hash>(secret, label + seed)
-//
-// The label is an ASCII string.
-
- tls->fd = 0;
-
// 7.4.9. Finished
// A Finished message is always sent immediately after a change
// cipher spec message to verify that the key exchange and
@@ -747,6 +900,39 @@ static void send_client_finished(tls_state_t *tls)
// suite. Any cipher suite which does not explicitly specify
// verify_data_length has a verify_data_length equal to 12. This
// includes all existing cipher suites.
+ struct client_finished {
+ struct record_hdr xhdr;
+ uint8_t type;
+ uint8_t len24_hi, len24_mid, len24_lo;
+ uint8_t prf_result[12];
+ };
+ struct client_finished record;
+ uint8_t handshake_hash[SHA256_OUTSIZE];
+ sha256_ctx_t ctx;
+
+ memset(&record, 0, sizeof(record));
+ record.xhdr.type = RECORD_TYPE_HANDSHAKE;
+ record.xhdr.proto_maj = TLS_MAJ;
+ record.xhdr.proto_min = TLS_MIN;
+ record.xhdr.len16_hi = (sizeof(record) - sizeof(record.xhdr)) >> 8;
+ record.xhdr.len16_lo = (sizeof(record) - sizeof(record.xhdr)) & 0xff;
+ record.type = HANDSHAKE_FINISHED;
+ //record.len24_hi = 0;
+ record.len24_mid = (sizeof(record) - sizeof(record.xhdr) - 4) >> 8;
+ record.len24_lo = (sizeof(record) - sizeof(record.xhdr) - 4) & 0xff;
+//FIXME ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this code is repeatable
+
+ ctx = tls->handshake_sha256_ctx; /* struct copy */
+ sha256_end(&ctx, handshake_hash);
+ tls_prf_hmac_sha256(record.prf_result, sizeof(record.prf_result),
+ tls->master_secret, sizeof(tls->master_secret),
+ "client finished",
+ handshake_hash, sizeof(handshake_hash)
+ );
+
+//(1) TODO: well, this should be encrypted on send, really.
+//(2) do we really need to also hash it?
+ xwrite_and_hash(tls, &record, sizeof(record));
}
static void get_change_cipher_spec(tls_state_t *tls)
@@ -831,6 +1017,10 @@ static void tls_handshake(tls_state_t *tls)
}
}
+// To run a test server using openssl:
+// openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1
+// openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
+
int tls_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int tls_main(int argc UNUSED_PARAM, char **argv)
{
diff --git a/networking/tls.h b/networking/tls.h
index 20317ec..3a8a3d8 100644
--- a/networking/tls.h
+++ b/networking/tls.h
@@ -59,7 +59,7 @@ void tls_get_random(void *buf, unsigned len);
#define matrixCryptoGetPrngData(buf, len, userPtr) (tls_get_random(buf, len), PS_SUCCESS)
#define psFree(p, pool) free(p)
-#define psTraceCrypto(msg) bb_error_msg_and_die(msg)
+#define psTraceCrypto(...) bb_error_msg_and_die(__VA_ARGS__)
/* Secure zerofill */
#define memset_s(A,B,C,D) memset((A),(C),(D))
diff --git a/networking/tls_rsa.c b/networking/tls_rsa.c
index 3114435..df71186 100644
--- a/networking/tls_rsa.c
+++ b/networking/tls_rsa.c
@@ -187,7 +187,7 @@ int32 psRsaEncryptPub(psPool_t *pool, psRsaKey_t *key,
size = key->size;
if (outlen < size) {
- psTraceCrypto("Error on bad outlen parameter to psRsaEncryptPub\n");
+ psTraceCrypto("Error on bad outlen parameter to psRsaEncryptPub: outlen:%d < size:%d", outlen, size);
return PS_ARG_FAIL;
}