diff options
-rw-r--r-- | networking/tls.c | 334 | ||||
-rw-r--r-- | networking/tls.h | 3 | ||||
-rw-r--r-- | networking/tls_fe.c | 601 | ||||
-rw-r--r-- | networking/tls_fe.h | 7 |
4 files changed, 865 insertions, 80 deletions
diff --git a/networking/tls.c b/networking/tls.c index 0f637a3..694fbf3 100644 --- a/networking/tls.c +++ b/networking/tls.c @@ -12,8 +12,9 @@ //kbuild:lib-$(CONFIG_TLS) += tls_pstm_montgomery_reduce.o //kbuild:lib-$(CONFIG_TLS) += tls_pstm_mul_comba.o //kbuild:lib-$(CONFIG_TLS) += tls_pstm_sqr_comba.o -//kbuild:lib-$(CONFIG_TLS) += tls_rsa.o //kbuild:lib-$(CONFIG_TLS) += tls_aes.o +//kbuild:lib-$(CONFIG_TLS) += tls_rsa.o +//kbuild:lib-$(CONFIG_TLS) += tls_fe.o ////kbuild:lib-$(CONFIG_TLS) += tls_aes_gcm.o #include "tls.h" @@ -57,6 +58,7 @@ #define CIPHER_ID2 TLS_RSA_WITH_AES_128_CBC_SHA // bug #11456: host is.gd accepts only ECDHE-ECDSA-foo (the simplest which works: ECDHE-ECDSA-AES128-SHA 0xC009) +#define CIPHER_ID3 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA #define TLS_DEBUG 0 @@ -260,15 +262,22 @@ struct record_hdr { uint8_t len16_hi, len16_lo; }; +enum { + KEY_ALG_RSA, + KEY_ALG_ECDSA, +}; struct tls_handshake_data { /* In bbox, md5/sha1/sha256 ctx's are the same structure */ md5sha_ctx_t handshake_hash_ctx; uint8_t client_and_server_rand32[2 * 32]; uint8_t master_secret[48]; + + smallint key_alg; //TODO: store just the DER key here, parse/use/delete it when sending client key //this way it will stay key type agnostic here. psRsaKey_t server_rsa_pub_key; + uint8_t ecc_pub_key32[32]; unsigned saved_client_hello_size; uint8_t saved_client_hello[1]; @@ -1022,15 +1031,25 @@ static uint8_t *skip_der_item(uint8_t *der, uint8_t *end) return new_der; } +// +static void binary_to_pstm(pstm_int *pstm_n, uint8_t *bin_ptr, unsigned len) +{ + pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len); + pstm_read_unsigned_bin(pstm_n, bin_ptr, len); + //return bin_ptr + len; +} +// + static void der_binary_to_pstm(pstm_int *pstm_n, uint8_t *der, uint8_t *end) { uint8_t *bin_ptr; unsigned len = get_der_len(&bin_ptr, der, end); dbg_der("binary bytes:%u, first:0x%02x\n", len, bin_ptr[0]); - pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len); - pstm_read_unsigned_bin(pstm_n, bin_ptr, len); - //return bin + len; + binary_to_pstm(pstm_n, bin_ptr, len); + //pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len); + //pstm_read_unsigned_bin(pstm_n, bin_ptr, len); + ////return bin_ptr + len; } static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len) @@ -1113,6 +1132,18 @@ static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len) * publicKey (BIT STRING) * * We need Certificate.tbsCertificate.subjectPublicKeyInfo.publicKey + * + * Example of an ECDSA key: + * SEQ 0x59 bytes (subjectPublicKeyInfo): 3059 + * SEQ 0x13 bytes (algorithm): 3013 + * OID 7 bytes: 0607 2a8648ce3d0201 (OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1) + * OID 8 bytes: 0608 2a8648ce3d030107 (OID_EC_prime256v1 42.134.72.206.61.3.1.7) + * BITSTRING 0x42 bytes (publicKey): 0342 + * 0004 53af f65e 50cc 7959 7e29 0171 c75c + * 7335 e07d f45b 9750 b797 3a38 aebb 2ac6 + * 8329 2748 e77e 41cb d482 2ce6 05ec a058 + * f3ab d561 2f4c d845 9ad3 7252 e3de bd3b + * 9012 */ uint8_t *end = der + len; @@ -1147,40 +1178,61 @@ static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len) /* enter subjectPublicKeyInfo */ der = enter_der_item(der, &end); { /* check subjectPublicKeyInfo.algorithm */ - static const uint8_t expected[] = { + static const uint8_t OID_RSA_KEY_ALG[] = { 0x30,0x0d, // SEQ 13 bytes 0x06,0x09, 0x2a,0x86,0x48,0x86,0xf7,0x0d,0x01,0x01,0x01, // OID RSA_KEY_ALG 42.134.72.134.247.13.1.1.1 //0x05,0x00, // NULL }; - if (memcmp(der, expected, sizeof(expected)) != 0) - bb_error_msg_and_die("not RSA key"); + static const uint8_t OID_ECDSA_KEY_ALG[] = { + 0x30,0x13, // SEQ 0x13 bytes + 0x06,0x07, 0x2a,0x86,0x48,0xce,0x3d,0x02,0x01, //OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1 + 0x06,0x08, 0x2a,0x86,0x48,0xce,0x3d,0x03,0x01,0x07, //OID_EC_prime256v1 42.134.72.206.61.3.1.7 + //rfc3279: + //42.134.72.206.61.3 is ellipticCurve + //42.134.72.206.61.3.0 is c-TwoCurve + //42.134.72.206.61.3.1 is primeCurve + //42.134.72.206.61.3.1.7 is prime256v1 + }; + if (memcmp(der, OID_RSA_KEY_ALG, sizeof(OID_RSA_KEY_ALG)) == 0) { + dbg("RSA key\n"); + tls->hsd->key_alg = KEY_ALG_RSA; + } else + if (memcmp(der, OID_ECDSA_KEY_ALG, sizeof(OID_ECDSA_KEY_ALG)) == 0) { + dbg("ECDSA key\n"); + tls->hsd->key_alg = KEY_ALG_ECDSA; + } else + bb_error_msg_and_die("not RSA or ECDSA key"); } - /* skip subjectPublicKeyInfo.algorithm */ - der = skip_der_item(der, end); - /* enter subjectPublicKeyInfo.publicKey */ -// die_if_not_this_der_type(der, end, 0x03); /* must be BITSTRING */ - der = enter_der_item(der, &end); - /* parse RSA key: */ -//based on getAsnRsaPubKey(), pkcs1ParsePrivBin() is also of note - dbg("key bytes:%u, first:0x%02x\n", (int)(end - der), der[0]); - if (end - der < 14) xfunc_die(); - /* example format: - * ignore bits: 00 - * SEQ 0x018a/394 bytes: 3082018a - * INTEGER 0x0181/385 bytes (modulus): 02820181 XX...XXX - * INTEGER 3 bytes (exponent): 0203 010001 - */ - if (*der != 0) /* "ignore bits", should be 0 */ - xfunc_die(); - der++; - der = enter_der_item(der, &end); /* enter SEQ */ - /* memset(tls->hsd->server_rsa_pub_key, 0, sizeof(tls->hsd->server_rsa_pub_key)); - already is */ - der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.N, der, end); /* modulus */ - der = skip_der_item(der, end); - der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.e, der, end); /* exponent */ - tls->hsd->server_rsa_pub_key.size = pstm_unsigned_bin_size(&tls->hsd->server_rsa_pub_key.N); - dbg("server_rsa_pub_key.size:%d\n", tls->hsd->server_rsa_pub_key.size); + if (tls->hsd->key_alg == KEY_ALG_RSA) { + /* parse RSA key: */ + //based on getAsnRsaPubKey(), pkcs1ParsePrivBin() is also of note + /* skip subjectPublicKeyInfo.algorithm */ + der = skip_der_item(der, end); + /* enter subjectPublicKeyInfo.publicKey */ +// die_if_not_this_der_type(der, end, 0x03); /* must be BITSTRING */ + der = enter_der_item(der, &end); + + dbg("key bytes:%u, first:0x%02x\n", (int)(end - der), der[0]); + if (end - der < 14) + xfunc_die(); + /* example format: + * ignore bits: 00 + * SEQ 0x018a/394 bytes: 3082018a + * INTEGER 0x0181/385 bytes (modulus): 02820181 XX...XXX + * INTEGER 3 bytes (exponent): 0203 010001 + */ + if (*der != 0) /* "ignore bits", should be 0 */ + xfunc_die(); + der++; + der = enter_der_item(der, &end); /* enter SEQ */ + /* memset(tls->hsd->server_rsa_pub_key, 0, sizeof(tls->hsd->server_rsa_pub_key)); - already is */ + der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.N, der, end); /* modulus */ + der = skip_der_item(der, end); + der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.e, der, end); /* exponent */ + tls->hsd->server_rsa_pub_key.size = pstm_unsigned_bin_size(&tls->hsd->server_rsa_pub_key.N); + dbg("server_rsa_pub_key.size:%d\n", tls->hsd->server_rsa_pub_key.size); + } } /* @@ -1217,6 +1269,22 @@ static ALWAYS_INLINE void fill_handshake_record_hdr(void *buf, unsigned type, un static void send_client_hello_and_alloc_hsd(tls_state_t *tls, const char *sni) { + static const uint8_t supported_groups[] = { + 0x00,0x0a, //extension_type: "supported_groups" + 0x00,0x04, //ext len + 0x00,0x02, //list len + 0x00,0x1d, //curve_x25519 (rfc7748) + //0x00,0x17, //curve_secp256r1 + //0x00,0x18, //curve_secp384r1 + //0x00,0x19, //curve_secp521r1 + }; + //static const uint8_t signature_algorithms[] = { + // 000d + // 0020 + // 001e + // 0601 0602 0603 0501 0502 0503 0401 0402 0403 0301 0302 0303 0201 0202 0203 + //}; + struct client_hello { uint8_t type; uint8_t len24_hi, len24_mid, len24_lo; @@ -1225,7 +1293,7 @@ static void send_client_hello_and_alloc_hsd(tls_state_t *tls, const char *sni) uint8_t session_id_len; /* uint8_t session_id[]; */ uint8_t cipherid_len16_hi, cipherid_len16_lo; - uint8_t cipherid[2 * (2 + !!CIPHER_ID2)]; /* actually variable */ + uint8_t cipherid[2 * (2 + !!CIPHER_ID2 + !!CIPHER_ID3)]; /* actually variable */ uint8_t comprtypes_len; uint8_t comprtypes[1]; /* actually variable */ /* Extensions (SNI shown): @@ -1250,12 +1318,19 @@ static void send_client_hello_and_alloc_hsd(tls_state_t *tls, const char *sni) // 0017 0000 - extended master secret }; struct client_hello *record; + uint8_t *ptr; int len; - int sni_len = sni ? strnlen(sni, 127 - 9) : 0; + int ext_len; + int sni_len = sni ? strnlen(sni, 127 - 5) : 0; - len = sizeof(*record); + ext_len = 0; + /* is.gd responds with "handshake failure" to our hello if there's no supported_groups element */ + ext_len += sizeof(supported_groups); if (sni_len) - len += 11 + sni_len; + ext_len += 9 + sni_len; + + /* +2 is for "len of all extensions" 2-byte field */ + len = sizeof(*record) + 2 + ext_len; record = tls_get_outbuf(tls, len); memset(record, 0, len); @@ -1278,25 +1353,30 @@ static void send_client_hello_and_alloc_hsd(tls_state_t *tls, const char *sni) if ((CIPHER_ID2 >> 8) != 0) record->cipherid[4] = CIPHER_ID2 >> 8; /*************************/ record->cipherid[5] = CIPHER_ID2 & 0xff; #endif +#if CIPHER_ID3 + if ((CIPHER_ID3 >> 8) != 0) record->cipherid[6] = CIPHER_ID3 >> 8; + /*************************/ record->cipherid[7] = CIPHER_ID3 & 0xff; +#endif record->comprtypes_len = 1; /* record->comprtypes[0] = 0; */ + ptr = (void*)(record + 1); + *ptr++ = ext_len >> 8; + *ptr++ = ext_len; if (sni_len) { - uint8_t *p = (void*)(record + 1); - //p[0] = 0; // - p[1] = sni_len + 9; //ext_len - //p[2] = 0; // - //p[3] = 0; //extension_type - //p[4] = 0; // - p[5] = sni_len + 5; //list len - //p[6] = 0; // - p[7] = sni_len + 3; //len of 1st SNI - //p[8] = 0; //name type - //p[9] = 0; // - p[10] = sni_len; //name len - memcpy(&p[11], sni, sni_len); + //ptr[0] = 0; // + //ptr[1] = 0; //extension_type + //ptr[2] = 0; // + ptr[3] = sni_len + 5; //list len + //ptr[4] = 0; // + ptr[5] = sni_len + 3; //len of 1st SNI + //ptr[6] = 0; //name type + //ptr[7] = 0; // + ptr[8] = sni_len; //name len + ptr = mempcpy(&ptr[9], sni, sni_len); } + mempcpy(ptr, supported_groups, sizeof(supported_groups)); dbg(">> CLIENT_HELLO\n"); /* Can hash it only when we know which MAC hash to use */ @@ -1373,7 +1453,9 @@ static void get_server_hello(tls_state_t *tls) tls->cipher_id = cipher = 0x100 * cipherid[0] + cipherid[1]; dbg("server chose cipher %04x\n", cipher); - if (cipher == TLS_RSA_WITH_AES_128_CBC_SHA) { + if (cipher == TLS_RSA_WITH_AES_128_CBC_SHA + || cipher == TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA + ) { tls->key_size = AES128_KEYSIZE; tls->MAC_size = SHA1_OUTSIZE; } @@ -1425,6 +1507,55 @@ static void get_server_cert(tls_state_t *tls) find_key_in_der_cert(tls, certbuf + 10, len); } +/* On input, len is known to be >= 4. + * The record is known to be SERVER_KEY_EXCHANGE. + */ +static void process_server_key(tls_state_t *tls, int len) +{ + struct record_hdr *xhdr; + uint8_t *keybuf; + int len1; + uint32_t t32; + + xhdr = (void*)tls->inbuf; + keybuf = (void*)(xhdr + 1); +//seen from is.gd: it selects curve_x25519: +// 0c 00006e //SERVER_KEY_EXCHANGE +// 03 //curve_type: named curve +// 001d //curve_x25519 +//server-chosen EC point, and then signed_params +// (rfc8422: "A hash of the params, with the signature +// appropriate to that hash applied. The private key corresponding +// to the certified public key in the server's Certificate message is +// used for signing.") +//follow. Format unclear/guessed: +// 20 //eccPubKeyLen +// 25511923d73b70dd2f60e66ba2f3fda31a9c25170963c7a3a972e481dbb2835d //eccPubKey (32bytes) +// 0203 //hashSigAlg: 2:SHA1 (4:SHA256 5:SHA384 6:SHA512), 3:ECDSA (1:RSA) +// 0046 //len (16bit) +// 30 44 //SEQ, len +// 02 20 //INTEGER, len +// 2e18e7c2a9badd0a70cd3059a6ab114539b9f5163568911147386cd77ed7c412 //32bytes +//this item ^^^^^ is sometimes 33 bytes (with all container sizes also +1) +// 02 20 //INTEGER, len +// 64523d6216cb94c43c9b20e377d8c52c55be6703fd6730a155930c705eaf3af6 //32bytes +//same about this item ^^^^^ + /* Get and verify length */ + len1 = get24be(keybuf + 1); + if (len1 > len - 4) tls_error_die(tls); + len = len1; + if (len < (1+2+1+32)) tls_error_die(tls); + keybuf += 4; + + /* So far we only support curve_x25519 */ + move_from_unaligned32(t32, keybuf); + if (t32 != htonl(0x03001d20)) + tls_error_die(tls); + + memcpy(tls->hsd->ecc_pub_key32, keybuf + 4, 32); + dbg("got eccPubKey\n"); +} + static void send_empty_client_cert(tls_state_t *tls) { struct client_empty_cert { @@ -1433,13 +1564,18 @@ static void send_empty_client_cert(tls_state_t *tls) uint8_t cert_chain_len24_hi, cert_chain_len24_mid, cert_chain_len24_lo; }; struct client_empty_cert *record; + static const uint8_t empty_client_cert[] = { + HANDSHAKE_CERTIFICATE, + 0, 0, 3, //len24 + 0, 0, 0, //cert_chain_len24 + }; record = tls_get_outbuf(tls, sizeof(*record)); -//FIXME: can just memcpy a ready-made one. - fill_handshake_record_hdr(record, HANDSHAKE_CERTIFICATE, sizeof(*record)); - record->cert_chain_len24_hi = 0; - record->cert_chain_len24_mid = 0; - record->cert_chain_len24_lo = 0; + //fill_handshake_record_hdr(record, HANDSHAKE_CERTIFICATE, sizeof(*record)); + //record->cert_chain_len24_hi = 0; + //record->cert_chain_len24_mid = 0; + //record->cert_chain_len24_lo = 0; + memcpy(record, empty_client_cert, sizeof(empty_client_cert)); dbg(">> CERTIFICATE\n"); xwrite_and_update_handshake_hash(tls, sizeof(*record)); @@ -1450,34 +1586,63 @@ static void send_client_key_exchange(tls_state_t *tls) struct client_key_exchange { uint8_t type; uint8_t len24_hi, len24_mid, len24_lo; - /* keylen16 exists for RSA (in TLS, not in SSL), but not for some other key types */ - uint8_t keylen16_hi, keylen16_lo; - uint8_t key[4 * 1024]; // size?? + uint8_t key[2 + 4 * 1024]; // size?? }; //FIXME: better size estimate struct client_key_exchange *record = tls_get_outbuf(tls, sizeof(*record)); uint8_t rsa_premaster[RSA_PREMASTER_SIZE]; + uint8_t x25519_premaster[CURVE25519_KEYSIZE]; + uint8_t *premaster; + int premaster_size; int len; - tls_get_random(rsa_premaster, sizeof(rsa_premaster)); - if (TLS_DEBUG_FIXED_SECRETS) - memset(rsa_premaster, 0x44, sizeof(rsa_premaster)); - // RFC 5246 - // "Note: The version number in the PreMasterSecret is the version - // offered by the client in the ClientHello.client_version, not the - // version negotiated for the connection." - rsa_premaster[0] = TLS_MAJ; - rsa_premaster[1] = TLS_MIN; - dump_hex("premaster:%s\n", rsa_premaster, sizeof(rsa_premaster)); - len = psRsaEncryptPub(/*pool:*/ NULL, - /* psRsaKey_t* */ &tls->hsd->server_rsa_pub_key, - rsa_premaster, /*inlen:*/ sizeof(rsa_premaster), - record->key, sizeof(record->key), - data_param_ignored - ); - record->keylen16_hi = len >> 8; - record->keylen16_lo = len & 0xff; - len += 2; + if (tls->hsd->key_alg == KEY_ALG_RSA) { + tls_get_random(rsa_premaster, sizeof(rsa_premaster)); + if (TLS_DEBUG_FIXED_SECRETS) + memset(rsa_premaster, 0x44, sizeof(rsa_premaster)); + // RFC 5246 + // "Note: The version number in the PreMasterSecret is the version + // offered by the client in the ClientHello.client_version, not the + // version negotiated for the connection." + rsa_premaster[0] = TLS_MAJ; + rsa_premaster[1] = TLS_MIN; + dump_hex("premaster:%s\n", rsa_premaster, sizeof(rsa_premaster)); + len = psRsaEncryptPub(/*pool:*/ NULL, + /* psRsaKey_t* */ &tls->hsd->server_rsa_pub_key, + rsa_premaster, /*inlen:*/ sizeof(rsa_premaster), + record->key + 2, sizeof(record->key) - 2, + data_param_ignored + ); + /* keylen16 exists for RSA (in TLS, not in SSL), but not for some other key types */ + record->key[0] = len >> 8; + record->key[1] = len & 0xff; + len += 2; + premaster = rsa_premaster; + premaster_size = sizeof(rsa_premaster); + } else { + /* KEY_ALG_ECDSA */ + static const uint8_t basepoint9[CURVE25519_KEYSIZE] = {9}; + uint8_t privkey[CURVE25519_KEYSIZE]; //[32] + + /* Generate random private key, see RFC 7748 */ + tls_get_random(privkey, sizeof(privkey)); + privkey[0] &= 0xf8; + privkey[CURVE25519_KEYSIZE-1] = ((privkey[CURVE25519_KEYSIZE-1] & 0x7f) | 0x40); + + /* Compute public key */ + curve25519(record->key + 1, privkey, basepoint9); + + /* Compute premaster using peer's public key */ + dbg("computing x25519_premaster\n"); + curve25519(x25519_premaster, privkey, tls->hsd->ecc_pub_key32); + + len = CURVE25519_KEYSIZE; + record->key[0] = len; + len++; + premaster = x25519_premaster; + premaster_size = sizeof(x25519_premaster); + } + record->type = HANDSHAKE_CLIENT_KEY_EXCHANGE; record->len24_hi = 0; record->len24_mid = len >> 8; @@ -1499,7 +1664,7 @@ static void send_client_key_exchange(tls_state_t *tls) // of the premaster secret will vary depending on key exchange method. prf_hmac_sha256(/*tls,*/ tls->hsd->master_secret, sizeof(tls->hsd->master_secret), - rsa_premaster, sizeof(rsa_premaster), + premaster, premaster_size, "master secret", tls->hsd->client_and_server_rand32, sizeof(tls->hsd->client_and_server_rand32) ); @@ -1686,8 +1851,19 @@ void FAST_FUNC tls_handshake(tls_state_t *tls, const char *sni) //SvKey len=455^ // with TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: 461 bytes: // 0c 00|01|c9 03|00|17|41|04|cd|9b|b4|29|1f|f6|b0|c2|84|82|7f|29|6a|47|4e|ec|87|0b|c1|9c|69|e1|f8|c6|d0|53|e9|27|90|a5|c8|02|15|75... + // + // RFC 8422 5.4. Server Key Exchange + // This message is sent when using the ECDHE_ECDSA, ECDHE_RSA, and + // ECDH_anon key exchange algorithms. + // This message is used to convey the server's ephemeral ECDH public key + // (and the corresponding elliptic curve domain parameters) to the + // client. dbg("<< SERVER_KEY_EXCHANGE len:%u\n", len); -//probably need to save it + dump_raw_in("<< %s\n", tls->inbuf, RECHDR_LEN + len); + if (tls->hsd->key_alg == KEY_ALG_ECDSA) + process_server_key(tls, len); + + // read next handshake block len = tls_xread_handshake_block(tls, 4); } diff --git a/networking/tls.h b/networking/tls.h index d487f38..66d25ef 100644 --- a/networking/tls.h +++ b/networking/tls.h @@ -94,6 +94,7 @@ void tls_get_random(void *buf, unsigned len); #include "tls_pstm.h" -#include "tls_rsa.h" #include "tls_symmetric.h" #include "tls_aes.h" +#include "tls_rsa.h" +#include "tls_fe.h" diff --git a/networking/tls_fe.c b/networking/tls_fe.c new file mode 100644 index 0000000..37fea34 --- /dev/null +++ b/networking/tls_fe.c @@ -0,0 +1,601 @@ +/* + * Copyright (C) 2018 Denys Vlasenko + * + * Licensed under GPLv2, see file LICENSE in this source tree. + */ +#include "tls.h" + +typedef uint8_t byte; +typedef uint16_t word16; +typedef uint32_t word32; +#define XMEMSET memset + +#define F25519_SIZE CURVE25519_KEYSIZE + +/* The code below is taken from wolfssl-3.15.3/wolfcrypt/src/fe_low_mem.c + * Header comment is kept intact: + */ + +/* fe_low_mem.c + * + * Copyright (C) 2006-2017 wolfSSL Inc. + * + * This file is part of wolfSSL. + * + * wolfSSL is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * wolfSSL is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA + */ + + +/* Based from Daniel Beer's public domain work. */ + +#if 0 //UNUSED +static void fprime_copy(byte *x, const byte *a) +{ + int i; + for (i = 0; i < F25519_SIZE; i++) + x[i] = a[i]; +} +#endif + +static void lm_copy(byte* x, const byte* a) +{ + int i; + for (i = 0; i < F25519_SIZE; i++) + x[i] = a[i]; +} + +#if 0 //UNUSED +static void fprime_select(byte *dst, const byte *zero, const byte *one, byte condition) +{ + const byte mask = -condition; + int i; + + for (i = 0; i < F25519_SIZE; i++) + dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); +} +#endif + +static void fe_select(byte *dst, + const byte *zero, const byte *one, + byte condition) +{ + const byte mask = -condition; + int i; + + for (i = 0; i < F25519_SIZE; i++) + dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); +} + +#if 0 //UNUSED +static void raw_add(byte *x, const byte *p) +{ + word16 c = 0; + int i; + + for (i = 0; i < F25519_SIZE; i++) { + c += ((word16)x[i]) + ((word16)p[i]); + x[i] = (byte)c; + c >>= 8; + } +} +#endif + +#if 0 //UNUSED +static void raw_try_sub(byte *x, const byte *p) +{ + byte minusp[F25519_SIZE]; + word16 c = 0; + int i; + + for (i = 0; i < F25519_SIZE; i++) { + c = ((word16)x[i]) - ((word16)p[i]) - c; + minusp[i] = (byte)c; + c = (c >> 8) & 1; + } + + fprime_select(x, minusp, x, (byte)c); +} +#endif + +#if 0 //UNUSED +static int prime_msb(const byte *p) +{ + int i; + byte x; + int shift = 1; + int z = F25519_SIZE - 1; + + /* + Test for any hot bits. + As soon as one instance is encountered set shift to 0. + */ + for (i = F25519_SIZE - 1; i >= 0; i--) { + shift &= ((shift ^ ((-p[i] | p[i]) >> 7)) & 1); + z -= shift; + } + x = p[z]; + z <<= 3; + shift = 1; + for (i = 0; i < 8; i++) { + shift &= ((-(x >> i) | (x >> i)) >> (7 - i) & 1); + z += shift; + } + + return z - 1; +} +#endif + +#if 0 //UNUSED +static void fprime_add(byte *r, const byte *a, const byte *modulus) +{ + raw_add(r, a); + raw_try_sub(r, modulus); +} +#endif + +#if 0 //UNUSED +static void fprime_sub(byte *r, const byte *a, const byte *modulus) +{ + raw_add(r, modulus); + raw_try_sub(r, a); + raw_try_sub(r, modulus); +} +#endif + +#if 0 //UNUSED +static void fprime_mul(byte *r, const byte *a, const byte *b, + const byte *modulus) +{ + word16 c = 0; + int i,j; + + XMEMSET(r, 0, F25519_SIZE); + + for (i = prime_msb(modulus); i >= 0; i--) { + const byte bit = (b[i >> 3] >> (i & 7)) & 1; + byte plusa[F25519_SIZE]; + + for (j = 0; j < F25519_SIZE; j++) { + c |= ((word16)r[j]) << 1; + r[j] = (byte)c; + c >>= 8; + } + raw_try_sub(r, modulus); + + fprime_copy(plusa, r); + fprime_add(plusa, a, modulus); + + fprime_select(r, r, plusa, bit); + } +} +#endif + +#if 0 //UNUSED +static void fe_load(byte *x, word32 c) +{ + word32 i; + + for (i = 0; i < sizeof(c); i++) { + x[i] = c; + c >>= 8; + } + + for (; i < F25519_SIZE; i++) + x[i] = 0; +} +#endif + +static void fe_normalize(byte *x) +{ + byte minusp[F25519_SIZE]; + word16 c; + int i; + + /* Reduce using 2^255 = 19 mod p */ + c = (x[31] >> 7) * 19; + x[31] &= 127; + + for (i = 0; i < F25519_SIZE; i++) { + c += x[i]; + x[i] = (byte)c; + c >>= 8; + } + + /* The number is now less than 2^255 + 18, and therefore less than + * 2p. Try subtracting p, and conditionally load the subtracted + * value if underflow did not occur. + */ + c = 19; + + for (i = 0; i + 1 < F25519_SIZE; i++) { + c += x[i]; + minusp[i] = (byte)c; + c >>= 8; + } + + c += ((word16)x[i]) - 128; + minusp[31] = (byte)c; + + /* Load x-p if no underflow */ + fe_select(x, minusp, x, (c >> 15) & 1); +} + +static void lm_add(byte* r, const byte* a, const byte* b) +{ + word16 c = 0; + int i; + + /* Add */ + for (i = 0; i < F25519_SIZE; i++) { + c >>= 8; + c += ((word16)a[i]) + ((word16)b[i]); + r[i] = (byte)c; + } + + /* Reduce with 2^255 = 19 mod p */ + r[31] &= 127; + c = (c >> 7) * 19; + + for (i = 0; i < F25519_SIZE; i++) { + c += r[i]; + r[i] = (byte)c; + c >>= 8; + } +} + +static void lm_sub(byte* r, const byte* a, const byte* b) +{ + word32 c = 0; + int i; + + /* Calculate a + 2p - b, to avoid underflow */ + c = 218; + for (i = 0; i + 1 < F25519_SIZE; i++) { + c += 65280 + ((word32)a[i]) - ((word32)b[i]); + r[i] = c; + c >>= 8; + } + + c += ((word32)a[31]) - ((word32)b[31]); + r[31] = c & 127; + c = (c >> 7) * 19; + + for (i = 0; i < F25519_SIZE; i++) { + c += r[i]; + r[i] = c; + c >>= 8; + } +} + +#if 0 //UNUSED +static void lm_neg(byte* r, const byte* a) +{ + word32 c = 0; + int i; + + /* Calculate 2p - a, to avoid underflow */ + c = 218; + for (i = 0; i + 1 < F25519_SIZE; i++) { + c += 65280 - ((word32)a[i]); + r[i] = c; + c >>= 8; + } + + c -= ((word32)a[31]); + r[31] = c & 127; + c = (c >> 7) * 19; + + for (i = 0; i < F25519_SIZE; i++) { + c += r[i]; + r[i] = c; + c >>= 8; + } +} +#endif + +static void fe_mul__distinct(byte *r, const byte *a, const byte *b) +{ + word32 c = 0; + int i; + + for (i = 0; i < F25519_SIZE; i++) { + int j; + + c >>= 8; + for (j = 0; j <= i; j++) + c += ((word32)a[j]) * ((word32)b[i - j]); + + for (; j < F25519_SIZE; j++) + c += ((word32)a[j]) * + ((word32)b[i + F25519_SIZE - j]) * 38; + + r[i] = c; + } + + r[31] &= 127; + c = (c >> 7) * 19; + + for (i = 0; i < F25519_SIZE; i++) { + c += r[i]; + r[i] = c; + c >>= 8; + } +} + +#if 0 //UNUSED +static void lm_mul(byte *r, const byte* a, const byte *b) +{ + byte tmp[F25519_SIZE]; + + fe_mul__distinct(tmp, a, b); + lm_copy(r, tmp); +} +#endif + +static void fe_mul_c(byte *r, const byte *a, word32 b) +{ + word32 c = 0; + int i; + + for (i = 0; i < F25519_SIZE; i++) { + c >>= 8; + c += b * ((word32)a[i]); + r[i] = c; + } + + r[31] &= 127; + c >>= 7; + c *= 19; + + for (i = 0; i < F25519_SIZE; i++) { + c += r[i]; + r[i] = c; + c >>= 8; + } +} + +static void fe_inv__distinct(byte *r, const byte *x) +{ + byte s[F25519_SIZE]; + int i; + + /* This is a prime field, so by Fermat's little theorem: + * + * x^(p-1) = 1 mod p + * + * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative + * inverse. + * + * This is a 255-bit binary number with the digits: + * + * 11111111... 01011 + * + * We compute the result by the usual binary chain, but + * alternate between keeping the accumulator in r and s, so as + * to avoid copying temporaries. + */ + + /* 1 1 */ + fe_mul__distinct(s, x, x); + fe_mul__distinct(r, s, x); + + /* 1 x 248 */ + for (i = 0; i < 248; i++) { + fe_mul__distinct(s, r, r); + fe_mul__distinct(r, s, x); + } + + /* 0 */ + fe_mul__distinct(s, r, r); + + /* 1 */ + fe_mul__distinct(r, s, s); + fe_mul__distinct(s, r, x); + + /* 0 */ + fe_mul__distinct(r, s, s); + + /* 1 */ + fe_mul__distinct(s, r, r); + fe_mul__distinct(r, s, x); + + /* 1 */ + fe_mul__distinct(s, r, r); + fe_mul__distinct(r, s, x); +} + +#if 0 //UNUSED +static void lm_invert(byte *r, const byte *x) +{ + byte tmp[F25519_SIZE]; + + fe_inv__distinct(tmp, x); + lm_copy(r, tmp); +} +#endif + +#if 0 //UNUSED +/* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary + * storage. + */ +static void exp2523(byte *r, const byte *x, byte *s) +{ + int i; + + /* This number is a 252-bit number with the binary expansion: + * + * 111111... 01 + */ + + /* 1 1 */ + fe_mul__distinct(r, x, x); + fe_mul__distinct(s, r, x); + + /* 1 x 248 */ + for (i = 0; i < 248; i++) { + fe_mul__distinct(r, s, s); + fe_mul__distinct(s, r, x); + } + + /* 0 */ + fe_mul__distinct(r, s, s); + + /* 1 */ + fe_mul__distinct(s, r, r); + fe_mul__distinct(r, s, x); +} +#endif + +#if 0 //UNUSED +static void fe_sqrt(byte *r, const byte *a) +{ + byte v[F25519_SIZE]; + byte i[F25519_SIZE]; + byte x[F25519_SIZE]; + byte y[F25519_SIZE]; + + /* v = (2a)^((p-5)/8) [x = 2a] */ + fe_mul_c(x, a, 2); + exp2523(v, x, y); + + /* i = 2av^2 - 1 */ + fe_mul__distinct(y, v, v); + fe_mul__distinct(i, x, y); + fe_load(y, 1); + lm_sub(i, i, y); + + /* r = avi */ + fe_mul__distinct(x, v, a); + fe_mul__distinct(r, x, i); +} +#endif + +/* Differential addition */ +static void xc_diffadd(byte *x5, byte *z5, + const byte *x1, const byte *z1, + const byte *x2, const byte *z2, + const byte *x3, const byte *z3) +{ + /* Explicit formulas database: dbl-1987-m3 + * + * source 1987 Montgomery "Speeding the Pollard and elliptic curve + * methods of factorization", page 261, fifth display, plus + * common-subexpression elimination + * compute A = X2+Z2 + * compute B = X2-Z2 + * compute C = X3+Z3 + * compute D = X3-Z3 + * compute DA = D A + * compute CB = C B + * compute X5 = Z1(DA+CB)^2 + * compute Z5 = X1(DA-CB)^2 + */ + byte da[F25519_SIZE]; + byte cb[F25519_SIZE]; + byte a[F25519_SIZE]; + byte b[F25519_SIZE]; + + lm_add(a, x2, z2); + lm_sub(b, x3, z3); /* D */ + fe_mul__distinct(da, a, b); + + lm_sub(b, x2, z2); + lm_add(a, x3, z3); /* C */ + fe_mul__distinct(cb, a, b); + + lm_add(a, da, cb); + fe_mul__distinct(b, a, a); + fe_mul__distinct(x5, z1, b); + + lm_sub(a, da, cb); + fe_mul__distinct(b, a, a); + fe_mul__distinct(z5, x1, b); +} + +/* Double an X-coordinate */ +static void xc_double(byte *x3, byte *z3, + const byte *x1, const byte *z1) +{ + /* Explicit formulas database: dbl-1987-m + * + * source 1987 Montgomery "Speeding the Pollard and elliptic + * curve methods of factorization", page 261, fourth display + * compute X3 = (X1^2-Z1^2)^2 + * compute Z3 = 4 X1 Z1 (X1^2 + a X1 Z1 + Z1^2) + */ + byte x1sq[F25519_SIZE]; + byte z1sq[F25519_SIZE]; + byte x1z1[F25519_SIZE]; + byte a[F25519_SIZE]; + + fe_mul__distinct(x1sq, x1, x1); + fe_mul__distinct(z1sq, z1, z1); + fe_mul__distinct(x1z1, x1, z1); + + lm_sub(a, x1sq, z1sq); + fe_mul__distinct(x3, a, a); + + fe_mul_c(a, x1z1, 486662); + lm_add(a, x1sq, a); + lm_add(a, z1sq, a); + fe_mul__distinct(x1sq, x1z1, a); + fe_mul_c(z3, x1sq, 4); +} + +void curve25519(byte *result, const byte *e, const byte *q) +{ + /* from wolfssl-3.15.3/wolfssl/wolfcrypt/fe_operations.h */ + static const byte f25519_one[F25519_SIZE] = {1}; + + /* Current point: P_m */ + byte xm[F25519_SIZE]; + byte zm[F25519_SIZE] = {1}; + + /* Predecessor: P_(m-1) */ + byte xm1[F25519_SIZE] = {1}; + byte zm1[F25519_SIZE] = {0}; + + int i; + + /* Note: bit 254 is assumed to be 1 */ + lm_copy(xm, q); + + for (i = 253; i >= 0; i--) { + const int bit = (e[i >> 3] >> (i & 7)) & 1; + byte xms[F25519_SIZE]; + byte zms[F25519_SIZE]; + + /* From P_m and P_(m-1), compute P_(2m) and P_(2m-1) */ + xc_diffadd(xm1, zm1, q, f25519_one, xm, zm, xm1, zm1); + xc_double(xm, zm, xm, zm); + + /* Compute P_(2m+1) */ + xc_diffadd(xms, zms, xm1, zm1, xm, zm, q, f25519_one); + + /* Select: + * bit = 1 --> (P_(2m+1), P_(2m)) + * bit = 0 --> (P_(2m), P_(2m-1)) + */ + fe_select(xm1, xm1, xm, bit); + fe_select(zm1, zm1, zm, bit); + fe_select(xm, xm, xms, bit); + fe_select(zm, zm, zms, bit); + } + + /* Freeze out of projective coordinates */ + fe_inv__distinct(zm1, zm); + fe_mul__distinct(result, zm1, xm); + fe_normalize(result); +} diff --git a/networking/tls_fe.h b/networking/tls_fe.h new file mode 100644 index 0000000..bd2f2b3 --- /dev/null +++ b/networking/tls_fe.h @@ -0,0 +1,7 @@ +/* + * Copyright (C) 2018 Denys Vlasenko + * + * Licensed under GPLv2, see file LICENSE in this source tree. + */ +#define CURVE25519_KEYSIZE 32 +void curve25519(uint8_t *result, const uint8_t *e, const uint8_t *q); |