diff options
author | Denis Vlasenko | 2008-11-10 13:32:50 +0000 |
---|---|---|
committer | Denis Vlasenko | 2008-11-10 13:32:50 +0000 |
commit | 56dceb9b7722193ef53fb1afb981f1289eecb0b0 (patch) | |
tree | 105363bf752df3c53e3d1165c8668af1983d5742 /libbb | |
parent | c028ec280a71c45ba71bb4712db1968391a440cc (diff) | |
download | busybox-56dceb9b7722193ef53fb1afb981f1289eecb0b0.zip busybox-56dceb9b7722193ef53fb1afb981f1289eecb0b0.tar.gz |
sha256,sha512: new applets. +4.9kb
we will require sha256/512 code for new $5$ and $6$ style
password hashes anyway, they are showing up already
in people's /etc/passwd...
Diffstat (limited to 'libbb')
-rw-r--r-- | libbb/sha1.c | 566 |
1 files changed, 538 insertions, 28 deletions
diff --git a/libbb/sha1.c b/libbb/sha1.c index ae72e4d..fa468a2 100644 --- a/libbb/sha1.c +++ b/libbb/sha1.c @@ -1,43 +1,57 @@ /* vi: set sw=4 ts=4: */ /* - * Based on shasum from http://www.netsw.org/crypto/hash/ - * Majorly hacked up to use Dr Brian Gladman's sha1 code + * Based on shasum from http://www.netsw.org/crypto/hash/ + * Majorly hacked up to use Dr Brian Gladman's sha1 code * - * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. - * Copyright (C) 2003 Glenn L. McGrath - * Copyright (C) 2003 Erik Andersen + * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. + * Copyright (C) 2003 Glenn L. McGrath + * Copyright (C) 2003 Erik Andersen * * Licensed under GPLv2 or later, see file LICENSE in this tarball for details. * - * --------------------------------------------------------------------------- - * Issue Date: 10/11/2002 + * --------------------------------------------------------------------------- + * Issue Date: 10/11/2002 * - * This is a byte oriented version of SHA1 that operates on arrays of bytes - * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor + * This is a byte oriented version of SHA1 that operates on arrays of bytes + * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor + * + * --------------------------------------------------------------------------- + * + * SHA256 and SHA512 parts are: + * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. + * TODO: shrink them. */ #include "libbb.h" +#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n)))) +#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n)))) +/* for sha512: */ +#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n)))) +#if BB_LITTLE_ENDIAN +static inline uint64_t hton64(uint64_t v) +{ + return (((uint64_t)htonl(v)) << 32) | htonl(v >> 32); +} +#else +#define hton64(v) (v) +#endif +#define ntoh64(v) hton64(v) + +/* To check alignment gcc has an appropriate operator. Other + compilers don't. */ +#if defined(__GNUC__) && __GNUC__ >= 2 +# define UNALIGNED_P(p,type) (((uintptr_t) p) % __alignof__(type) != 0) +#else +# define UNALIGNED_P(p,type) (((uintptr_t) p) % sizeof(type) != 0) +#endif + + #define SHA1_BLOCK_SIZE 64 #define SHA1_DIGEST_SIZE 20 #define SHA1_HASH_SIZE SHA1_DIGEST_SIZE #define SHA1_MASK (SHA1_BLOCK_SIZE - 1) -#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n))) - -/* Reverse byte order in 32-bit words */ -#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) -#define parity(x,y,z) ((x) ^ (y) ^ (z)) -#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) - -/* A normal version as set out in the FIPS. This version uses */ -/* partial loop unrolling and is optimised for the Pentium 4 */ -#define rnd(f,k) \ - do { \ - t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \ - e = d; d = c; c = rotl32(b, 30); b = t; \ - } while (0) - static void sha1_compile(sha1_ctx_t *ctx) { uint32_t w[80], i, a, b, c, d, e, t; @@ -46,10 +60,12 @@ static void sha1_compile(sha1_ctx_t *ctx) /* words in big-endian order so an order reversal is needed */ /* here on little endian machines */ for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i) - w[i] = htonl(ctx->wbuf[i]); + w[i] = ntohl(ctx->wbuf[i]); - for (i = SHA1_BLOCK_SIZE / 4; i < 80; ++i) - w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1); + for (/*i = SHA1_BLOCK_SIZE / 4*/; i < 80; ++i) { + t = w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]; + w[i] = rotl32(t, 1); + } a = ctx->hash[0]; b = ctx->hash[1]; @@ -57,6 +73,18 @@ static void sha1_compile(sha1_ctx_t *ctx) d = ctx->hash[3]; e = ctx->hash[4]; +/* Reverse byte order in 32-bit words */ +#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) +#define parity(x,y,z) ((x) ^ (y) ^ (z)) +#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) +/* A normal version as set out in the FIPS. This version uses */ +/* partial loop unrolling and is optimised for the Pentium 4 */ +#define rnd(f,k) \ + do { \ + t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \ + e = d; d = c; c = rotl32(b, 30); b = t; \ + } while (0) + for (i = 0; i < 20; ++i) rnd(ch, 0x5a827999); @@ -68,6 +96,10 @@ static void sha1_compile(sha1_ctx_t *ctx) for (i = 60; i < 80; ++i) rnd(parity, 0xca62c1d6); +#undef ch +#undef parity +#undef maj +#undef rnd ctx->hash[0] += a; ctx->hash[1] += b; @@ -76,6 +108,261 @@ static void sha1_compile(sha1_ctx_t *ctx) ctx->hash[4] += e; } +/* Process LEN bytes of BUFFER, accumulating context into CTX. + It is assumed that LEN % 64 == 0. */ +static void sha256_process_block(const void *buffer, size_t len, sha256_ctx_t *ctx) +{ + /* Constants for SHA256 from FIPS 180-2:4.2.2. */ + static const uint32_t K[64] = { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, + 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, + 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, + 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, + 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, + 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, + 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, + 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, + 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 + }; + const uint32_t *words = buffer; + size_t nwords = len / sizeof(uint32_t); + uint32_t a = ctx->H[0]; + uint32_t b = ctx->H[1]; + uint32_t c = ctx->H[2]; + uint32_t d = ctx->H[3]; + uint32_t e = ctx->H[4]; + uint32_t f = ctx->H[5]; + uint32_t g = ctx->H[6]; + uint32_t h = ctx->H[7]; + + /* First increment the byte count. FIPS 180-2 specifies the possible + length of the file up to 2^64 bits. Here we only compute the + number of bytes. Do a double word increment. */ + ctx->total[0] += len; + if (ctx->total[0] < len) + ctx->total[1]++; + + /* Process all bytes in the buffer with 64 bytes in each round of + the loop. */ + while (nwords > 0) { + uint32_t W[64]; + uint32_t a_save = a; + uint32_t b_save = b; + uint32_t c_save = c; + uint32_t d_save = d; + uint32_t e_save = e; + uint32_t f_save = f; + uint32_t g_save = g; + uint32_t h_save = h; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22)) +#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25)) +#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3)) +#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10)) + + /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ + for (unsigned t = 0; t < 16; ++t) { + W[t] = ntohl(*words); + ++words; + } + for (unsigned t = 16; t < 64; ++t) + W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; + + /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ + for (unsigned t = 0; t < 64; ++t) { + uint32_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t]; + uint32_t T2 = S0(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } +#undef Ch +#undef Maj +#undef S0 +#undef S1 +#undef R0 +#undef R1 + /* Add the starting values of the context according to FIPS 180-2:6.2.2 + step 4. */ + a += a_save; + b += b_save; + c += c_save; + d += d_save; + e += e_save; + f += f_save; + g += g_save; + h += h_save; + + /* Prepare for the next round. */ + nwords -= 16; + } + + /* Put checksum in context given as argument. */ + ctx->H[0] = a; + ctx->H[1] = b; + ctx->H[2] = c; + ctx->H[3] = d; + ctx->H[4] = e; + ctx->H[5] = f; + ctx->H[6] = g; + ctx->H[7] = h; +} + +/* Process LEN bytes of BUFFER, accumulating context into CTX. + It is assumed that LEN % 128 == 0. */ +static void sha512_process_block(const void *buffer, size_t len, sha512_ctx_t *ctx) +{ + /* Constants for SHA512 from FIPS 180-2:4.2.3. */ + static const uint64_t K[80] = { + 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, + 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, + 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, + 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, + 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, + 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, + 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, + 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, + 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, + 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, + 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, + 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, + 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, + 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, + 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, + 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, + 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, + 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, + 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, + 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, + 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, + 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, + 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, + 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, + 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, + 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, + 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, + 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, + 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, + 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, + 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, + 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, + 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, + 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, + 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, + 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, + 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, + 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, + 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, + 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL, + }; + const uint64_t *words = buffer; + size_t nwords = len / sizeof(uint64_t); + uint64_t a = ctx->H[0]; + uint64_t b = ctx->H[1]; + uint64_t c = ctx->H[2]; + uint64_t d = ctx->H[3]; + uint64_t e = ctx->H[4]; + uint64_t f = ctx->H[5]; + uint64_t g = ctx->H[6]; + uint64_t h = ctx->H[7]; + + /* First increment the byte count. FIPS 180-2 specifies the possible + length of the file up to 2^128 bits. Here we only compute the + number of bytes. Do a double word increment. */ + ctx->total[0] += len; + if (ctx->total[0] < len) + ctx->total[1]++; + + /* Process all bytes in the buffer with 128 bytes in each round of + the loop. */ + while (nwords > 0) { + uint64_t W[80]; + uint64_t a_save = a; + uint64_t b_save = b; + uint64_t c_save = c; + uint64_t d_save = d; + uint64_t e_save = e; + uint64_t f_save = f; + uint64_t g_save = g; + uint64_t h_save = h; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39)) +#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41)) +#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7)) +#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6)) + + /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ + for (unsigned t = 0; t < 16; ++t) { + W[t] = ntoh64(*words); + ++words; + } + for (unsigned t = 16; t < 80; ++t) + W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; + + /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ + for (unsigned t = 0; t < 80; ++t) { + uint64_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t]; + uint64_t T2 = S0(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } +#undef Ch +#undef Maj +#undef S0 +#undef S1 +#undef R0 +#undef R1 + /* Add the starting values of the context according to FIPS 180-2:6.3.2 + step 4. */ + a += a_save; + b += b_save; + c += c_save; + d += d_save; + e += e_save; + f += f_save; + g += g_save; + h += h_save; + + /* Prepare for the next round. */ + nwords -= 16; + } + + /* Put checksum in context given as argument. */ + ctx->H[0] = a; + ctx->H[1] = b; + ctx->H[2] = c; + ctx->H[3] = d; + ctx->H[4] = e; + ctx->H[5] = f; + ctx->H[6] = g; + ctx->H[7] = h; +} + + void FAST_FUNC sha1_begin(sha1_ctx_t *ctx) { ctx->count[0] = ctx->count[1] = 0; @@ -86,6 +373,39 @@ void FAST_FUNC sha1_begin(sha1_ctx_t *ctx) ctx->hash[4] = 0xc3d2e1f0; } +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.2) */ +void FAST_FUNC sha256_begin(sha256_ctx_t *ctx) +{ + ctx->H[0] = 0x6a09e667; + ctx->H[1] = 0xbb67ae85; + ctx->H[2] = 0x3c6ef372; + ctx->H[3] = 0xa54ff53a; + ctx->H[4] = 0x510e527f; + ctx->H[5] = 0x9b05688c; + ctx->H[6] = 0x1f83d9ab; + ctx->H[7] = 0x5be0cd19; + ctx->total[0] = ctx->total[1] = 0; + ctx->buflen = 0; +} + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.3) */ +void FAST_FUNC sha512_begin(sha512_ctx_t *ctx) +{ + ctx->H[0] = 0x6a09e667f3bcc908ULL; + ctx->H[1] = 0xbb67ae8584caa73bULL; + ctx->H[2] = 0x3c6ef372fe94f82bULL; + ctx->H[3] = 0xa54ff53a5f1d36f1ULL; + ctx->H[4] = 0x510e527fade682d1ULL; + ctx->H[5] = 0x9b05688c2b3e6c1fULL; + ctx->H[6] = 0x1f83d9abfb41bd6bULL; + ctx->H[7] = 0x5be0cd19137e2179ULL; + ctx->total[0] = ctx->total[1] = 0; + ctx->buflen = 0; +} + + /* SHA1 hash data in an array of bytes into hash buffer and call the */ /* hash_compile function as required. */ void FAST_FUNC sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx) @@ -94,7 +414,8 @@ void FAST_FUNC sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx) uint32_t freeb = SHA1_BLOCK_SIZE - pos; const unsigned char *sp = data; - if ((ctx->count[0] += length) < length) + ctx->count[0] += length; + if (ctx->count[0] < length) ctx->count[1]++; while (length >= freeb) { /* transfer whole blocks while possible */ @@ -109,6 +430,122 @@ void FAST_FUNC sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx) memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length); } +void FAST_FUNC sha256_hash(const void *buffer, size_t len, sha256_ctx_t *ctx) +{ + /* When we already have some bits in our internal buffer concatenate + both inputs first. */ + if (ctx->buflen != 0) { + size_t left_over = ctx->buflen; + size_t add = 128 - left_over > len ? len : 128 - left_over; + + memcpy(&ctx->buffer[left_over], buffer, add); + ctx->buflen += add; + + if (ctx->buflen > 64) { + sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx); + + ctx->buflen &= 63; + /* The regions in the following copy operation cannot overlap. */ + memcpy(ctx->buffer, + &ctx->buffer[(left_over + add) & ~63], + ctx->buflen); + } + + buffer = (const char *)buffer + add; + len -= add; + } + + /* Process available complete blocks. */ + if (len >= 64) { + if (UNALIGNED_P(buffer, uint32_t)) { + while (len > 64) { + sha256_process_block(memcpy(ctx->buffer, buffer, 64), + 64, ctx); + buffer = (const char *)buffer + 64; + len -= 64; + } + } else { + sha256_process_block(buffer, len & ~63, ctx); + buffer = (const char *)buffer + (len & ~63); + len &= 63; + } + } + + /* Move remaining bytes into internal buffer. */ + if (len > 0) { + size_t left_over = ctx->buflen; + + memcpy(&ctx->buffer[left_over], buffer, len); + left_over += len; + if (left_over >= 64) { + sha256_process_block(ctx->buffer, 64, ctx); + left_over -= 64; + memcpy(ctx->buffer, &ctx->buffer[64], left_over); + } + ctx->buflen = left_over; + } +} + +void FAST_FUNC sha512_hash(const void *buffer, size_t len, sha512_ctx_t *ctx) +{ + /* When we already have some bits in our internal buffer concatenate + both inputs first. */ + if (ctx->buflen != 0) { + size_t left_over = ctx->buflen; + size_t add = 256 - left_over > len ? len : 256 - left_over; + + memcpy(&ctx->buffer[left_over], buffer, add); + ctx->buflen += add; + + if (ctx->buflen > 128) { + sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx); + + ctx->buflen &= 127; + /* The regions in the following copy operation cannot overlap. */ + memcpy(ctx->buffer, + &ctx->buffer[(left_over + add) & ~127], + ctx->buflen); + } + + buffer = (const char *)buffer + add; + len -= add; + } + + /* Process available complete blocks. */ + if (len >= 128) { +// #if BB_ARCH_REQUIRES_ALIGNMENT + if (UNALIGNED_P(buffer, uint64_t)) { + while (len > 128) { + sha512_process_block(memcpy(ctx->buffer, buffer, 128), + 128, ctx); + buffer = (const char *)buffer + 128; + len -= 128; + } + } else +// #endif + { + sha512_process_block(buffer, len & ~127, ctx); + buffer = (const char *)buffer + (len & ~127); + len &= 127; + } + } + + /* Move remaining bytes into internal buffer. */ + if (len > 0) { + size_t left_over = ctx->buflen; + + memcpy(&ctx->buffer[left_over], buffer, len); + left_over += len; + if (left_over >= 128) { + sha512_process_block(ctx->buffer, 128, ctx); + left_over -= 128; + memcpy(ctx->buffer, &ctx->buffer[128], left_over); + } + ctx->buflen = left_over; + } +} + + void* FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx) { /* SHA1 Final padding and digest calculation */ @@ -159,3 +596,76 @@ void* FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx) return resbuf; } + + +/* Process the remaining bytes in the internal buffer and the usual + prolog according to the standard and write the result to RESBUF. + + IMPORTANT: On some systems it is required that RESBUF is correctly + aligned for a 32 bits value. */ +void* FAST_FUNC sha256_end(void *resbuf, sha256_ctx_t *ctx) +{ + /* Take yet unprocessed bytes into account. */ + uint32_t bytes = ctx->buflen; + size_t pad; + + /* Now count remaining bytes. */ + ctx->total[0] += bytes; + if (ctx->total[0] < bytes) + ctx->total[1]++; + + /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... + (FIPS 180-2:5.1.1) */ + pad = (bytes >= 56 ? 64 + 56 - bytes : 56 - bytes); + memset(&ctx->buffer[bytes], 0, pad); + ctx->buffer[bytes] = 0x80; + + /* Put the 64-bit file length in *bits* at the end of the buffer. */ + *(uint32_t *) &ctx->buffer[bytes + pad + 4] = ntohl(ctx->total[0] << 3); + *(uint32_t *) &ctx->buffer[bytes + pad] = ntohl((ctx->total[1] << 3) | (ctx->total[0] >> 29)); + + /* Process last bytes. */ + sha256_process_block(ctx->buffer, bytes + pad + 8, ctx); + + /* Put result from CTX in first 32 bytes following RESBUF. */ + for (unsigned i = 0; i < 8; ++i) + ((uint32_t *) resbuf)[i] = ntohl(ctx->H[i]); + + return resbuf; +} + +/* Process the remaining bytes in the internal buffer and the usual + prolog according to the standard and write the result to RESBUF. + + IMPORTANT: On some systems it is required that RESBUF is correctly + aligned for a 64 bits value. */ +void* FAST_FUNC sha512_end(void *resbuf, sha512_ctx_t *ctx) +{ + /* Take yet unprocessed bytes into account. */ + uint64_t bytes = ctx->buflen; + size_t pad; + + /* Now count remaining bytes. */ + ctx->total[0] += bytes; + if (ctx->total[0] < bytes) + ctx->total[1]++; + + /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... + (FIPS 180-2:5.1.2) */ + pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes; + memset(&ctx->buffer[bytes], 0, pad); + ctx->buffer[bytes] = 0x80; + + /* Put the 128-bit file length in *bits* at the end of the buffer. */ + *(uint64_t *) &ctx->buffer[bytes + pad + 8] = hton64(ctx->total[0] << 3); + *(uint64_t *) &ctx->buffer[bytes + pad] = hton64((ctx->total[1] << 3) | (ctx->total[0] >> 61)); + + /* Process last bytes. */ + sha512_process_block(ctx->buffer, bytes + pad + 16, ctx); + + /* Put result from CTX in first 64 bytes following RESBUF. */ + for (unsigned i = 0; i < 8; ++i) + ((uint64_t *) resbuf)[i] = hton64(ctx->H[i]); + + return resbuf; +} |