diff options
author | Denys Vlasenko | 2010-10-18 10:38:18 +0200 |
---|---|---|
committer | Denys Vlasenko | 2010-10-18 10:38:18 +0200 |
commit | 06f719fd79fe15ce6fd5431bc58fcb22851de24d (patch) | |
tree | 2fc468c9a73e7a83440bbff24fb636a671ccb1cd /libbb/hash_sha.c | |
parent | 5fe2f863b9cee5ab0e7ac873538bce48846dbad8 (diff) | |
download | busybox-06f719fd79fe15ce6fd5431bc58fcb22851de24d.zip busybox-06f719fd79fe15ce6fd5431bc58fcb22851de24d.tar.gz |
libbb: rename hash source files. no code changes
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Diffstat (limited to 'libbb/hash_sha.c')
-rw-r--r-- | libbb/hash_sha.c | 530 |
1 files changed, 530 insertions, 0 deletions
diff --git a/libbb/hash_sha.c b/libbb/hash_sha.c new file mode 100644 index 0000000..d792911 --- /dev/null +++ b/libbb/hash_sha.c @@ -0,0 +1,530 @@ +/* vi: set sw=4 ts=4: */ +/* + * Based on shasum from http://www.netsw.org/crypto/hash/ + * Majorly hacked up to use Dr Brian Gladman's sha1 code + * + * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. + * Copyright (C) 2003 Glenn L. McGrath + * Copyright (C) 2003 Erik Andersen + * + * Licensed under GPLv2 or later, see file LICENSE in this source tree. + * + * --------------------------------------------------------------------------- + * Issue Date: 10/11/2002 + * + * This is a byte oriented version of SHA1 that operates on arrays of bytes + * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor + * + * --------------------------------------------------------------------------- + * + * SHA256 and SHA512 parts are: + * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. + * Shrank by Denys Vlasenko. + * + * --------------------------------------------------------------------------- + * + * The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c + * and replace "4096" with something like "2000 + time(NULL) % 2097", + * then rebuild and compare "shaNNNsum bigfile" results. + */ + +#include "libbb.h" + +/* gcc 4.2.1 optimizes rotr64 better with inline than with macro + * (for rotX32, there is no difference). Why? My guess is that + * macro requires clever common subexpression elimination heuristics + * in gcc, while inline basically forces it to happen. + */ +//#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n)))) +static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n) +{ + return (x << n) | (x >> (32 - n)); +} +//#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n)))) +static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n) +{ + return (x >> n) | (x << (32 - n)); +} +/* rotr64 in needed for sha512 only: */ +//#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n)))) +static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n) +{ + return (x >> n) | (x << (64 - n)); +} +#if BB_LITTLE_ENDIAN +/* ALWAYS_INLINE below would hurt code size, using plain inline: */ +static inline uint64_t hton64(uint64_t v) +{ + return (((uint64_t)htonl(v)) << 32) | htonl(v >> 32); +} +#else +#define hton64(v) (v) +#endif +#define ntoh64(v) hton64(v) + + +/* Some arch headers have conflicting defines */ +#undef ch +#undef parity +#undef maj +#undef rnd + +static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx) +{ + unsigned t; + uint32_t W[80], a, b, c, d, e; + const uint32_t *words = (uint32_t*) ctx->wbuffer; + + for (t = 0; t < 16; ++t) + W[t] = ntohl(words[t]); + for (/*t = 16*/; t < 80; ++t) { + uint32_t T = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]; + W[t] = rotl32(T, 1); + } + + a = ctx->hash[0]; + b = ctx->hash[1]; + c = ctx->hash[2]; + d = ctx->hash[3]; + e = ctx->hash[4]; + +/* Reverse byte order in 32-bit words */ +#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) +#define parity(x,y,z) ((x) ^ (y) ^ (z)) +#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y)))) +/* A normal version as set out in the FIPS. This version uses */ +/* partial loop unrolling and is optimised for the Pentium 4 */ +#define rnd(f,k) \ + do { \ + uint32_t T = a; \ + a = rotl32(a, 5) + f(b, c, d) + e + k + W[t]; \ + e = d; \ + d = c; \ + c = rotl32(b, 30); \ + b = T; \ + } while (0) + + for (t = 0; t < 20; ++t) + rnd(ch, 0x5a827999); + + for (/*t = 20*/; t < 40; ++t) + rnd(parity, 0x6ed9eba1); + + for (/*t = 40*/; t < 60; ++t) + rnd(maj, 0x8f1bbcdc); + + for (/*t = 60*/; t < 80; ++t) + rnd(parity, 0xca62c1d6); +#undef ch +#undef parity +#undef maj +#undef rnd + + ctx->hash[0] += a; + ctx->hash[1] += b; + ctx->hash[2] += c; + ctx->hash[3] += d; + ctx->hash[4] += e; +} + +/* Constants for SHA512 from FIPS 180-2:4.2.3. + * SHA256 constants from FIPS 180-2:4.2.2 + * are the most significant half of first 64 elements + * of the same array. + */ +static const uint64_t sha_K[80] = { + 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, + 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, + 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, + 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, + 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, + 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, + 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, + 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, + 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, + 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, + 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, + 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, + 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, + 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, + 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, + 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, + 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, + 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, + 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, + 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, + 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, + 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, + 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, + 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, + 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, + 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, + 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, + 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, + 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, + 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, + 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, + 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, + 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, /* [64]+ are used for sha512 only */ + 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, + 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, + 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, + 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, + 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, + 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, + 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL +}; + +#undef Ch +#undef Maj +#undef S0 +#undef S1 +#undef R0 +#undef R1 + +static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx) +{ + unsigned t; + uint32_t W[64], a, b, c, d, e, f, g, h; + const uint32_t *words = (uint32_t*) ctx->wbuffer; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22)) +#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25)) +#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3)) +#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10)) + + /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ + for (t = 0; t < 16; ++t) + W[t] = ntohl(words[t]); + for (/*t = 16*/; t < 64; ++t) + W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; + + a = ctx->hash[0]; + b = ctx->hash[1]; + c = ctx->hash[2]; + d = ctx->hash[3]; + e = ctx->hash[4]; + f = ctx->hash[5]; + g = ctx->hash[6]; + h = ctx->hash[7]; + + /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ + for (t = 0; t < 64; ++t) { + /* Need to fetch upper half of sha_K[t] + * (I hope compiler is clever enough to just fetch + * upper half) + */ + uint32_t K_t = sha_K[t] >> 32; + uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t]; + uint32_t T2 = S0(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } +#undef Ch +#undef Maj +#undef S0 +#undef S1 +#undef R0 +#undef R1 + /* Add the starting values of the context according to FIPS 180-2:6.2.2 + step 4. */ + ctx->hash[0] += a; + ctx->hash[1] += b; + ctx->hash[2] += c; + ctx->hash[3] += d; + ctx->hash[4] += e; + ctx->hash[5] += f; + ctx->hash[6] += g; + ctx->hash[7] += h; +} + +static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx) +{ + unsigned t; + uint64_t W[80]; + /* On i386, having assignments here (not later as sha256 does) + * produces 99 bytes smaller code with gcc 4.3.1 + */ + uint64_t a = ctx->hash[0]; + uint64_t b = ctx->hash[1]; + uint64_t c = ctx->hash[2]; + uint64_t d = ctx->hash[3]; + uint64_t e = ctx->hash[4]; + uint64_t f = ctx->hash[5]; + uint64_t g = ctx->hash[6]; + uint64_t h = ctx->hash[7]; + const uint64_t *words = (uint64_t*) ctx->wbuffer; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39)) +#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41)) +#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7)) +#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6)) + + /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ + for (t = 0; t < 16; ++t) + W[t] = ntoh64(words[t]); + for (/*t = 16*/; t < 80; ++t) + W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; + + /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ + for (t = 0; t < 80; ++t) { + uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t]; + uint64_t T2 = S0(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } +#undef Ch +#undef Maj +#undef S0 +#undef S1 +#undef R0 +#undef R1 + /* Add the starting values of the context according to FIPS 180-2:6.3.2 + step 4. */ + ctx->hash[0] += a; + ctx->hash[1] += b; + ctx->hash[2] += c; + ctx->hash[3] += d; + ctx->hash[4] += e; + ctx->hash[5] += f; + ctx->hash[6] += g; + ctx->hash[7] += h; +} + + +void FAST_FUNC sha1_begin(sha1_ctx_t *ctx) +{ + ctx->hash[0] = 0x67452301; + ctx->hash[1] = 0xefcdab89; + ctx->hash[2] = 0x98badcfe; + ctx->hash[3] = 0x10325476; + ctx->hash[4] = 0xc3d2e1f0; + ctx->total64 = 0; + ctx->process_block = sha1_process_block64; +} + +static const uint32_t init256[] = { + 0x6a09e667, + 0xbb67ae85, + 0x3c6ef372, + 0xa54ff53a, + 0x510e527f, + 0x9b05688c, + 0x1f83d9ab, + 0x5be0cd19, + 0, + 0, +}; +static const uint32_t init512_lo[] = { + 0xf3bcc908, + 0x84caa73b, + 0xfe94f82b, + 0x5f1d36f1, + 0xade682d1, + 0x2b3e6c1f, + 0xfb41bd6b, + 0x137e2179, + 0, + 0, +}; + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.2) */ +void FAST_FUNC sha256_begin(sha256_ctx_t *ctx) +{ + memcpy(ctx->hash, init256, sizeof(init256)); + /*ctx->total64 = 0; - done by extending init256 with two 32-bit zeros */ + ctx->process_block = sha256_process_block64; +} + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.3) */ +void FAST_FUNC sha512_begin(sha512_ctx_t *ctx) +{ + int i; + /* Two extra iterations zero out ctx->total64[] */ + for (i = 0; i < 8+2; i++) + ctx->hash[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i]; + /*ctx->total64[0] = ctx->total64[1] = 0; - already done */ +} + + +/* Used also for sha256 */ +void FAST_FUNC sha1_hash(sha1_ctx_t *ctx, const void *buffer, size_t len) +{ + unsigned bufpos = ctx->total64 & 63; + unsigned remaining; + + ctx->total64 += len; +#if 0 + remaining = 64 - bufpos; + + /* Hash whole blocks */ + while (len >= remaining) { + memcpy(ctx->wbuffer + bufpos, buffer, remaining); + buffer = (const char *)buffer + remaining; + len -= remaining; + remaining = 64; + bufpos = 0; + ctx->process_block(ctx); + } + + /* Save last, partial blosk */ + memcpy(ctx->wbuffer + bufpos, buffer, len); +#else + /* Tiny bit smaller code */ + while (1) { + remaining = 64 - bufpos; + if (remaining > len) + remaining = len; + /* Copy data into aligned buffer */ + memcpy(ctx->wbuffer + bufpos, buffer, remaining); + len -= remaining; + buffer = (const char *)buffer + remaining; + bufpos += remaining; + /* clever way to do "if (bufpos != 64) break; ... ; bufpos = 0;" */ + bufpos -= 64; + if (bufpos != 0) + break; + /* Buffer is filled up, process it */ + ctx->process_block(ctx); + /*bufpos = 0; - already is */ + } +#endif +} + +void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len) +{ + unsigned bufpos = ctx->total64[0] & 127; + unsigned remaining; + + /* First increment the byte count. FIPS 180-2 specifies the possible + length of the file up to 2^128 _bits_. + We compute the number of _bytes_ and convert to bits later. */ + ctx->total64[0] += len; + if (ctx->total64[0] < len) + ctx->total64[1]++; +#if 0 + remaining = 128 - bufpos; + + /* Hash whole blocks */ + while (len >= remaining) { + memcpy(ctx->wbuffer + bufpos, buffer, remaining); + buffer = (const char *)buffer + remaining; + len -= remaining; + remaining = 128; + bufpos = 0; + sha512_process_block128(ctx); + } + + /* Save last, partial blosk */ + memcpy(ctx->wbuffer + bufpos, buffer, len); +#else + while (1) { + remaining = 128 - bufpos; + if (remaining > len) + remaining = len; + /* Copy data into aligned buffer */ + memcpy(ctx->wbuffer + bufpos, buffer, remaining); + len -= remaining; + buffer = (const char *)buffer + remaining; + bufpos += remaining; + /* clever way to do "if (bufpos != 128) break; ... ; bufpos = 0;" */ + bufpos -= 128; + if (bufpos != 0) + break; + /* Buffer is filled up, process it */ + sha512_process_block128(ctx); + /*bufpos = 0; - already is */ + } +#endif +} + + +/* Used also for sha256 */ +void FAST_FUNC sha1_end(sha1_ctx_t *ctx, void *resbuf) +{ + unsigned bufpos = ctx->total64 & 63; + + /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */ + ctx->wbuffer[bufpos++] = 0x80; + + /* This loop iterates either once or twice, no more, no less */ + while (1) { + unsigned remaining = 64 - bufpos; + memset(ctx->wbuffer + bufpos, 0, remaining); + /* Do we have enough space for the length count? */ + if (remaining >= 8) { + /* Store the 64-bit counter of bits in the buffer in BE format */ + uint64_t t = ctx->total64 << 3; + t = hton64(t); + /* wbuffer is suitably aligned for this */ + *(uint64_t *) (&ctx->wbuffer[64 - 8]) = t; + } + ctx->process_block(ctx); + if (remaining >= 8) + break; + bufpos = 0; + } + + bufpos = (ctx->process_block == sha1_process_block64) ? 5 : 8; + /* This way we do not impose alignment constraints on resbuf: */ + if (BB_LITTLE_ENDIAN) { + unsigned i; + for (i = 0; i < bufpos; ++i) + ctx->hash[i] = htonl(ctx->hash[i]); + } + memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * bufpos); +} + +void FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf) +{ + unsigned bufpos = ctx->total64[0] & 127; + + /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... */ + ctx->wbuffer[bufpos++] = 0x80; + + while (1) { + unsigned remaining = 128 - bufpos; + memset(ctx->wbuffer + bufpos, 0, remaining); + if (remaining >= 16) { + /* Store the 128-bit counter of bits in the buffer in BE format */ + uint64_t t; + t = ctx->total64[0] << 3; + t = hton64(t); + *(uint64_t *) (&ctx->wbuffer[128 - 8]) = t; + t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61); + t = hton64(t); + *(uint64_t *) (&ctx->wbuffer[128 - 16]) = t; + } + sha512_process_block128(ctx); + if (remaining >= 16) + break; + bufpos = 0; + } + + if (BB_LITTLE_ENDIAN) { + unsigned i; + for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i) + ctx->hash[i] = hton64(ctx->hash[i]); + } + memcpy(resbuf, ctx->hash, sizeof(ctx->hash)); +} |