summaryrefslogtreecommitdiff
path: root/e2fsprogs/e2fsck/dict.c
diff options
context:
space:
mode:
author"Vladimir N. Oleynik"2005-09-27 11:43:29 +0000
committer"Vladimir N. Oleynik"2005-09-27 11:43:29 +0000
commit3978e5576e1675c2fac631fcba07a976405b5e4b (patch)
treea7020db24bbcaebdce5a3a325967e21feacf7a89 /e2fsprogs/e2fsck/dict.c
parent16ce8aa4123388c4a6237301e656c8f4e24a7e52 (diff)
downloadbusybox-3978e5576e1675c2fac631fcba07a976405b5e4b.zip
busybox-3978e5576e1675c2fac631fcba07a976405b5e4b.tar.gz
move e2fsck/* to e2fsck.c, one e2fsck_main and jornal exported, small automatic size reduction
Diffstat (limited to 'e2fsprogs/e2fsck/dict.c')
-rw-r--r--e2fsprogs/e2fsck/dict.c1529
1 files changed, 0 insertions, 1529 deletions
diff --git a/e2fsprogs/e2fsck/dict.c b/e2fsprogs/e2fsck/dict.c
deleted file mode 100644
index b0809a7..0000000
--- a/e2fsprogs/e2fsck/dict.c
+++ /dev/null
@@ -1,1529 +0,0 @@
-/*
- * Dictionary Abstract Data Type
- * Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
- *
- * Free Software License:
- *
- * All rights are reserved by the author, with the following exceptions:
- * Permission is granted to freely reproduce and distribute this software,
- * possibly in exchange for a fee, provided that this copyright notice appears
- * intact. Permission is also granted to adapt this software to produce
- * derivative works, as long as the modified versions carry this copyright
- * notice and additional notices stating that the work has been modified.
- * This source code may be translated into executable form and incorporated
- * into proprietary software; there is no requirement for such software to
- * contain a copyright notice related to this source.
- *
- * $Id: dict.c,v 1.40.2.7 2000/11/13 01:36:44 kaz Exp $
- * $Name: kazlib_1_20 $
- */
-
-#ifdef __GNUC__
-#define EXT2FS_ATTR(x) __attribute__(x)
-#else
-#define EXT2FS_ATTR(x)
-#endif
-
-#include <stdlib.h>
-#include <stddef.h>
-#include <assert.h>
-#define DICT_IMPLEMENTATION
-#include "dict.h"
-
-#ifndef NDEBUG
-# define NDEBUG
-#endif
-
-/*
- * These macros provide short convenient names for structure members,
- * which are embellished with dict_ prefixes so that they are
- * properly confined to the documented namespace. It's legal for a
- * program which uses dict to define, for instance, a macro called ``parent''.
- * Such a macro would interfere with the dnode_t struct definition.
- * In general, highly portable and reusable C modules which expose their
- * structures need to confine structure member names to well-defined spaces.
- * The resulting identifiers aren't necessarily convenient to use, nor
- * readable, in the implementation, however!
- */
-
-#define left dict_left
-#define right dict_right
-#define parent dict_parent
-#define color dict_color
-#define key dict_key
-#define data dict_data
-
-#define nilnode dict_nilnode
-#define nodecount dict_nodecount
-#define maxcount dict_maxcount
-#define compare dict_compare
-#define allocnode dict_allocnode
-#define freenode dict_freenode
-#define context dict_context
-#define dupes dict_dupes
-
-#define dictptr dict_dictptr
-
-#define dict_root(D) ((D)->nilnode.left)
-#define dict_nil(D) (&(D)->nilnode)
-#define DICT_DEPTH_MAX 64
-
-static dnode_t *dnode_alloc(void *context);
-static void dnode_free(dnode_t *node, void *context);
-
-/*
- * Perform a ``left rotation'' adjustment on the tree. The given node P and
- * its right child C are rearranged so that the P instead becomes the left
- * child of C. The left subtree of C is inherited as the new right subtree
- * for P. The ordering of the keys within the tree is thus preserved.
- */
-
-static void rotate_left(dnode_t *upper)
-{
- dnode_t *lower, *lowleft, *upparent;
-
- lower = upper->right;
- upper->right = lowleft = lower->left;
- lowleft->parent = upper;
-
- lower->parent = upparent = upper->parent;
-
- /* don't need to check for root node here because root->parent is
- the sentinel nil node, and root->parent->left points back to root */
-
- if (upper == upparent->left) {
- upparent->left = lower;
- } else {
- assert (upper == upparent->right);
- upparent->right = lower;
- }
-
- lower->left = upper;
- upper->parent = lower;
-}
-
-/*
- * This operation is the ``mirror'' image of rotate_left. It is
- * the same procedure, but with left and right interchanged.
- */
-
-static void rotate_right(dnode_t *upper)
-{
- dnode_t *lower, *lowright, *upparent;
-
- lower = upper->left;
- upper->left = lowright = lower->right;
- lowright->parent = upper;
-
- lower->parent = upparent = upper->parent;
-
- if (upper == upparent->right) {
- upparent->right = lower;
- } else {
- assert (upper == upparent->left);
- upparent->left = lower;
- }
-
- lower->right = upper;
- upper->parent = lower;
-}
-
-/*
- * Do a postorder traversal of the tree rooted at the specified
- * node and free everything under it. Used by dict_free().
- */
-
-static void free_nodes(dict_t *dict, dnode_t *node, dnode_t *nil)
-{
- if (node == nil)
- return;
- free_nodes(dict, node->left, nil);
- free_nodes(dict, node->right, nil);
- dict->freenode(node, dict->context);
-}
-
-/*
- * This procedure performs a verification that the given subtree is a binary
- * search tree. It performs an inorder traversal of the tree using the
- * dict_next() successor function, verifying that the key of each node is
- * strictly lower than that of its successor, if duplicates are not allowed,
- * or lower or equal if duplicates are allowed. This function is used for
- * debugging purposes.
- */
-#ifndef NDEBUG
-static int verify_bintree(dict_t *dict)
-{
- dnode_t *first, *next;
-
- first = dict_first(dict);
-
- if (dict->dupes) {
- while (first && (next = dict_next(dict, first))) {
- if (dict->compare(first->key, next->key) > 0)
- return 0;
- first = next;
- }
- } else {
- while (first && (next = dict_next(dict, first))) {
- if (dict->compare(first->key, next->key) >= 0)
- return 0;
- first = next;
- }
- }
- return 1;
-}
-
-/*
- * This function recursively verifies that the given binary subtree satisfies
- * three of the red black properties. It checks that every red node has only
- * black children. It makes sure that each node is either red or black. And it
- * checks that every path has the same count of black nodes from root to leaf.
- * It returns the blackheight of the given subtree; this allows blackheights to
- * be computed recursively and compared for left and right siblings for
- * mismatches. It does not check for every nil node being black, because there
- * is only one sentinel nil node. The return value of this function is the
- * black height of the subtree rooted at the node ``root'', or zero if the
- * subtree is not red-black.
- */
-
-static unsigned int verify_redblack(dnode_t *nil, dnode_t *root)
-{
- unsigned height_left, height_right;
-
- if (root != nil) {
- height_left = verify_redblack(nil, root->left);
- height_right = verify_redblack(nil, root->right);
- if (height_left == 0 || height_right == 0)
- return 0;
- if (height_left != height_right)
- return 0;
- if (root->color == dnode_red) {
- if (root->left->color != dnode_black)
- return 0;
- if (root->right->color != dnode_black)
- return 0;
- return height_left;
- }
- if (root->color != dnode_black)
- return 0;
- return height_left + 1;
- }
- return 1;
-}
-
-/*
- * Compute the actual count of nodes by traversing the tree and
- * return it. This could be compared against the stored count to
- * detect a mismatch.
- */
-
-static dictcount_t verify_node_count(dnode_t *nil, dnode_t *root)
-{
- if (root == nil)
- return 0;
- else
- return 1 + verify_node_count(nil, root->left)
- + verify_node_count(nil, root->right);
-}
-#endif
-
-/*
- * Verify that the tree contains the given node. This is done by
- * traversing all of the nodes and comparing their pointers to the
- * given pointer. Returns 1 if the node is found, otherwise
- * returns zero. It is intended for debugging purposes.
- */
-
-static int verify_dict_has_node(dnode_t *nil, dnode_t *root, dnode_t *node)
-{
- if (root != nil) {
- return root == node
- || verify_dict_has_node(nil, root->left, node)
- || verify_dict_has_node(nil, root->right, node);
- }
- return 0;
-}
-
-
-#ifdef E2FSCK_NOTUSED
-/*
- * Dynamically allocate and initialize a dictionary object.
- */
-
-dict_t *dict_create(dictcount_t maxcount, dict_comp_t comp)
-{
- dict_t *new = malloc(sizeof *new);
-
- if (new) {
- new->compare = comp;
- new->allocnode = dnode_alloc;
- new->freenode = dnode_free;
- new->context = NULL;
- new->nodecount = 0;
- new->maxcount = maxcount;
- new->nilnode.left = &new->nilnode;
- new->nilnode.right = &new->nilnode;
- new->nilnode.parent = &new->nilnode;
- new->nilnode.color = dnode_black;
- new->dupes = 0;
- }
- return new;
-}
-#endif /* E2FSCK_NOTUSED */
-
-/*
- * Select a different set of node allocator routines.
- */
-
-void dict_set_allocator(dict_t *dict, dnode_alloc_t al,
- dnode_free_t fr, void *context)
-{
- assert (dict_count(dict) == 0);
- assert ((al == NULL && fr == NULL) || (al != NULL && fr != NULL));
-
- dict->allocnode = al ? al : dnode_alloc;
- dict->freenode = fr ? fr : dnode_free;
- dict->context = context;
-}
-
-#ifdef E2FSCK_NOTUSED
-/*
- * Free a dynamically allocated dictionary object. Removing the nodes
- * from the tree before deleting it is required.
- */
-
-void dict_destroy(dict_t *dict)
-{
- assert (dict_isempty(dict));
- free(dict);
-}
-#endif
-
-/*
- * Free all the nodes in the dictionary by using the dictionary's
- * installed free routine. The dictionary is emptied.
- */
-
-void dict_free_nodes(dict_t *dict)
-{
- dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
- free_nodes(dict, root, nil);
- dict->nodecount = 0;
- dict->nilnode.left = &dict->nilnode;
- dict->nilnode.right = &dict->nilnode;
-}
-
-#ifdef E2FSCK_NOTUSED
-/*
- * Obsolescent function, equivalent to dict_free_nodes
- */
-void dict_free(dict_t *dict)
-{
-#ifdef KAZLIB_OBSOLESCENT_DEBUG
- assert ("call to obsolescent function dict_free()" && 0);
-#endif
- dict_free_nodes(dict);
-}
-#endif
-
-/*
- * Initialize a user-supplied dictionary object.
- */
-
-dict_t *dict_init(dict_t *dict, dictcount_t maxcount, dict_comp_t comp)
-{
- dict->compare = comp;
- dict->allocnode = dnode_alloc;
- dict->freenode = dnode_free;
- dict->context = NULL;
- dict->nodecount = 0;
- dict->maxcount = maxcount;
- dict->nilnode.left = &dict->nilnode;
- dict->nilnode.right = &dict->nilnode;
- dict->nilnode.parent = &dict->nilnode;
- dict->nilnode.color = dnode_black;
- dict->dupes = 0;
- return dict;
-}
-
-#ifdef E2FSCK_NOTUSED
-/*
- * Initialize a dictionary in the likeness of another dictionary
- */
-
-void dict_init_like(dict_t *dict, const dict_t *template)
-{
- dict->compare = template->compare;
- dict->allocnode = template->allocnode;
- dict->freenode = template->freenode;
- dict->context = template->context;
- dict->nodecount = 0;
- dict->maxcount = template->maxcount;
- dict->nilnode.left = &dict->nilnode;
- dict->nilnode.right = &dict->nilnode;
- dict->nilnode.parent = &dict->nilnode;
- dict->nilnode.color = dnode_black;
- dict->dupes = template->dupes;
-
- assert (dict_similar(dict, template));
-}
-
-/*
- * Remove all nodes from the dictionary (without freeing them in any way).
- */
-
-static void dict_clear(dict_t *dict)
-{
- dict->nodecount = 0;
- dict->nilnode.left = &dict->nilnode;
- dict->nilnode.right = &dict->nilnode;
- dict->nilnode.parent = &dict->nilnode;
- assert (dict->nilnode.color == dnode_black);
-}
-
-
-/*
- * Verify the integrity of the dictionary structure. This is provided for
- * debugging purposes, and should be placed in assert statements. Just because
- * this function succeeds doesn't mean that the tree is not corrupt. Certain
- * corruptions in the tree may simply cause undefined behavior.
- */
-
-int dict_verify(dict_t *dict)
-{
-#ifndef NDEBUG
- dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
-
- /* check that the sentinel node and root node are black */
- if (root->color != dnode_black)
- return 0;
- if (nil->color != dnode_black)
- return 0;
- if (nil->right != nil)
- return 0;
- /* nil->left is the root node; check that its parent pointer is nil */
- if (nil->left->parent != nil)
- return 0;
- /* perform a weak test that the tree is a binary search tree */
- if (!verify_bintree(dict))
- return 0;
- /* verify that the tree is a red-black tree */
- if (!verify_redblack(nil, root))
- return 0;
- if (verify_node_count(nil, root) != dict_count(dict))
- return 0;
-#endif
- return 1;
-}
-
-/*
- * Determine whether two dictionaries are similar: have the same comparison and
- * allocator functions, and same status as to whether duplicates are allowed.
- */
-
-int dict_similar(const dict_t *left, const dict_t *right)
-{
- if (left->compare != right->compare)
- return 0;
-
- if (left->allocnode != right->allocnode)
- return 0;
-
- if (left->freenode != right->freenode)
- return 0;
-
- if (left->context != right->context)
- return 0;
-
- if (left->dupes != right->dupes)
- return 0;
-
- return 1;
-}
-#endif /* E2FSCK_NOTUSED */
-
-/*
- * Locate a node in the dictionary having the given key.
- * If the node is not found, a null a pointer is returned (rather than
- * a pointer that dictionary's nil sentinel node), otherwise a pointer to the
- * located node is returned.
- */
-
-dnode_t *dict_lookup(dict_t *dict, const void *key)
-{
- dnode_t *root = dict_root(dict);
- dnode_t *nil = dict_nil(dict);
- dnode_t *saved;
- int result;
-
- /* simple binary search adapted for trees that contain duplicate keys */
-
- while (root != nil) {
- result = dict->compare(key, root->key);
- if (result < 0)
- root = root->left;
- else if (result > 0)
- root = root->right;
- else {
- if (!dict->dupes) { /* no duplicates, return match */
- return root;
- } else { /* could be dupes, find leftmost one */
- do {
- saved = root;
- root = root->left;
- while (root != nil && dict->compare(key, root->key))
- root = root->right;
- } while (root != nil);
- return saved;
- }
- }
- }
-
- return NULL;
-}
-
-#ifdef E2FSCK_NOTUSED
-/*
- * Look for the node corresponding to the lowest key that is equal to or
- * greater than the given key. If there is no such node, return null.
- */
-
-dnode_t *dict_lower_bound(dict_t *dict, const void *key)
-{
- dnode_t *root = dict_root(dict);
- dnode_t *nil = dict_nil(dict);
- dnode_t *tentative = 0;
-
- while (root != nil) {
- int result = dict->compare(key, root->key);
-
- if (result > 0) {
- root = root->right;
- } else if (result < 0) {
- tentative = root;
- root = root->left;
- } else {
- if (!dict->dupes) {
- return root;
- } else {
- tentative = root;
- root = root->left;
- }
- }
- }
-
- return tentative;
-}
-
-/*
- * Look for the node corresponding to the greatest key that is equal to or
- * lower than the given key. If there is no such node, return null.
- */
-
-dnode_t *dict_upper_bound(dict_t *dict, const void *key)
-{
- dnode_t *root = dict_root(dict);
- dnode_t *nil = dict_nil(dict);
- dnode_t *tentative = 0;
-
- while (root != nil) {
- int result = dict->compare(key, root->key);
-
- if (result < 0) {
- root = root->left;
- } else if (result > 0) {
- tentative = root;
- root = root->right;
- } else {
- if (!dict->dupes) {
- return root;
- } else {
- tentative = root;
- root = root->right;
- }
- }
- }
-
- return tentative;
-}
-#endif
-
-/*
- * Insert a node into the dictionary. The node should have been
- * initialized with a data field. All other fields are ignored.
- * The behavior is undefined if the user attempts to insert into
- * a dictionary that is already full (for which the dict_isfull()
- * function returns true).
- */
-
-void dict_insert(dict_t *dict, dnode_t *node, const void *key)
-{
- dnode_t *where = dict_root(dict), *nil = dict_nil(dict);
- dnode_t *parent = nil, *uncle, *grandpa;
- int result = -1;
-
- node->key = key;
-
-#ifndef NDEBUG
- assert (!dict_isfull(dict));
- assert (!dict_contains(dict, node));
- assert (!dnode_is_in_a_dict(node));
-#endif
-
- /* basic binary tree insert */
-
- while (where != nil) {
- parent = where;
- result = dict->compare(key, where->key);
- /* trap attempts at duplicate key insertion unless it's explicitly allowed */
- assert (dict->dupes || result != 0);
- if (result < 0)
- where = where->left;
- else
- where = where->right;
- }
-
- assert (where == nil);
-
- if (result < 0)
- parent->left = node;
- else
- parent->right = node;
-
- node->parent = parent;
- node->left = nil;
- node->right = nil;
-
- dict->nodecount++;
-
- /* red black adjustments */
-
- node->color = dnode_red;
-
- while (parent->color == dnode_red) {
- grandpa = parent->parent;
- if (parent == grandpa->left) {
- uncle = grandpa->right;
- if (uncle->color == dnode_red) { /* red parent, red uncle */
- parent->color = dnode_black;
- uncle->color = dnode_black;
- grandpa->color = dnode_red;
- node = grandpa;
- parent = grandpa->parent;
- } else { /* red parent, black uncle */
- if (node == parent->right) {
- rotate_left(parent);
- parent = node;
- assert (grandpa == parent->parent);
- /* rotation between parent and child preserves grandpa */
- }
- parent->color = dnode_black;
- grandpa->color = dnode_red;
- rotate_right(grandpa);
- break;
- }
- } else { /* symmetric cases: parent == parent->parent->right */
- uncle = grandpa->left;
- if (uncle->color == dnode_red) {
- parent->color = dnode_black;
- uncle->color = dnode_black;
- grandpa->color = dnode_red;
- node = grandpa;
- parent = grandpa->parent;
- } else {
- if (node == parent->left) {
- rotate_right(parent);
- parent = node;
- assert (grandpa == parent->parent);
- }
- parent->color = dnode_black;
- grandpa->color = dnode_red;
- rotate_left(grandpa);
- break;
- }
- }
- }
-
- dict_root(dict)->color = dnode_black;
-
-#ifdef E2FSCK_NOTUSED
- assert (dict_verify(dict));
-#endif
-}
-
-#ifdef E2FSCK_NOTUSED
-/*
- * Delete the given node from the dictionary. If the given node does not belong
- * to the given dictionary, undefined behavior results. A pointer to the
- * deleted node is returned.
- */
-
-dnode_t *dict_delete(dict_t *dict, dnode_t *delete)
-{
- dnode_t *nil = dict_nil(dict), *child, *delparent = delete->parent;
-
- /* basic deletion */
-
- assert (!dict_isempty(dict));
- assert (dict_contains(dict, delete));
-
- /*
- * If the node being deleted has two children, then we replace it with its
- * successor (i.e. the leftmost node in the right subtree.) By doing this,
- * we avoid the traditional algorithm under which the successor's key and
- * value *only* move to the deleted node and the successor is spliced out
- * from the tree. We cannot use this approach because the user may hold
- * pointers to the successor, or nodes may be inextricably tied to some
- * other structures by way of embedding, etc. So we must splice out the
- * node we are given, not some other node, and must not move contents from
- * one node to another behind the user's back.
- */
-
- if (delete->left != nil && delete->right != nil) {
- dnode_t *next = dict_next(dict, delete);
- dnode_t *nextparent = next->parent;
- dnode_color_t nextcolor = next->color;
-
- assert (next != nil);
- assert (next->parent != nil);
- assert (next->left == nil);
-
- /*
- * First, splice out the successor from the tree completely, by
- * moving up its right child into its place.
- */
-
- child = next->right;
- child->parent = nextparent;
-
- if (nextparent->left == next) {
- nextparent->left = child;
- } else {
- assert (nextparent->right == next);
- nextparent->right = child;
- }
-
- /*
- * Now that the successor has been extricated from the tree, install it
- * in place of the node that we want deleted.
- */
-
- next->parent = delparent;
- next->left = delete->left;
- next->right = delete->right;
- next->left->parent = next;
- next->right->parent = next;
- next->color = delete->color;
- delete->color = nextcolor;
-
- if (delparent->left == delete) {
- delparent->left = next;
- } else {
- assert (delparent->right == delete);
- delparent->right = next;
- }
-
- } else {
- assert (delete != nil);
- assert (delete->left == nil || delete->right == nil);
-
- child = (delete->left != nil) ? delete->left : delete->right;
-
- child->parent = delparent = delete->parent;
-
- if (delete == delparent->left) {
- delparent->left = child;
- } else {
- assert (delete == delparent->right);
- delparent->right = child;
- }
- }
-
- delete->parent = NULL;
- delete->right = NULL;
- delete->left = NULL;
-
- dict->nodecount--;
-
- assert (verify_bintree(dict));
-
- /* red-black adjustments */
-
- if (delete->color == dnode_black) {
- dnode_t *parent, *sister;
-
- dict_root(dict)->color = dnode_red;
-
- while (child->color == dnode_black) {
- parent = child->parent;
- if (child == parent->left) {
- sister = parent->right;
- assert (sister != nil);
- if (sister->color == dnode_red) {
- sister->color = dnode_black;
- parent->color = dnode_red;
- rotate_left(parent);
- sister = parent->right;
- assert (sister != nil);
- }
- if (sister->left->color == dnode_black
- && sister->right->color == dnode_black) {
- sister->color = dnode_red;
- child = parent;
- } else {
- if (sister->right->color == dnode_black) {
- assert (sister->left->color == dnode_red);
- sister->left->color = dnode_black;
- sister->color = dnode_red;
- rotate_right(sister);
- sister = parent->right;
- assert (sister != nil);
- }
- sister->color = parent->color;
- sister->right->color = dnode_black;
- parent->color = dnode_black;
- rotate_left(parent);
- break;
- }
- } else { /* symmetric case: child == child->parent->right */
- assert (child == parent->right);
- sister = parent->left;
- assert (sister != nil);
- if (sister->color == dnode_red) {
- sister->color = dnode_black;
- parent->color = dnode_red;
- rotate_right(parent);
- sister = parent->left;
- assert (sister != nil);
- }
- if (sister->right->color == dnode_black
- && sister->left->color == dnode_black) {
- sister->color = dnode_red;
- child = parent;
- } else {
- if (sister->left->color == dnode_black) {
- assert (sister->right->color == dnode_red);
- sister->right->color = dnode_black;
- sister->color = dnode_red;
- rotate_left(sister);
- sister = parent->left;
- assert (sister != nil);
- }
- sister->color = parent->color;
- sister->left->color = dnode_black;
- parent->color = dnode_black;
- rotate_right(parent);
- break;
- }
- }
- }
-
- child->color = dnode_black;
- dict_root(dict)->color = dnode_black;
- }
-
-#ifdef E2FSCK_NOTUSED
- assert (dict_verify(dict));
-#endif
-
- return delete;
-}
-#endif /* E2FSCK_NOTUSED */
-
-/*
- * Allocate a node using the dictionary's allocator routine, give it
- * the data item.
- */
-
-int dict_alloc_insert(dict_t *dict, const void *key, void *data)
-{
- dnode_t *node = dict->allocnode(dict->context);
-
- if (node) {
- dnode_init(node, data);
- dict_insert(dict, node, key);
- return 1;
- }
- return 0;
-}
-
-#ifdef E2FSCK_NOTUSED
-void dict_delete_free(dict_t *dict, dnode_t *node)
-{
- dict_delete(dict, node);
- dict->freenode(node, dict->context);
-}
-#endif
-
-/*
- * Return the node with the lowest (leftmost) key. If the dictionary is empty
- * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
- */
-
-dnode_t *dict_first(dict_t *dict)
-{
- dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *left;
-
- if (root != nil)
- while ((left = root->left) != nil)
- root = left;
-
- return (root == nil) ? NULL : root;
-}
-
-/*
- * Return the node with the highest (rightmost) key. If the dictionary is empty
- * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
- */
-
-dnode_t *dict_last(dict_t *dict)
-{
- dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *right;
-
- if (root != nil)
- while ((right = root->right) != nil)
- root = right;
-
- return (root == nil) ? NULL : root;
-}
-
-/*
- * Return the given node's successor node---the node which has the
- * next key in the the left to right ordering. If the node has
- * no successor, a null pointer is returned rather than a pointer to
- * the nil node.
- */
-
-dnode_t *dict_next(dict_t *dict, dnode_t *curr)
-{
- dnode_t *nil = dict_nil(dict), *parent, *left;
-
- if (curr->right != nil) {
- curr = curr->right;
- while ((left = curr->left) != nil)
- curr = left;
- return curr;
- }
-
- parent = curr->parent;
-
- while (parent != nil && curr == parent->right) {
- curr = parent;
- parent = curr->parent;
- }
-
- return (parent == nil) ? NULL : parent;
-}
-
-/*
- * Return the given node's predecessor, in the key order.
- * The nil sentinel node is returned if there is no predecessor.
- */
-
-dnode_t *dict_prev(dict_t *dict, dnode_t *curr)
-{
- dnode_t *nil = dict_nil(dict), *parent, *right;
-
- if (curr->left != nil) {
- curr = curr->left;
- while ((right = curr->right) != nil)
- curr = right;
- return curr;
- }
-
- parent = curr->parent;
-
- while (parent != nil && curr == parent->left) {
- curr = parent;
- parent = curr->parent;
- }
-
- return (parent == nil) ? NULL : parent;
-}
-
-void dict_allow_dupes(dict_t *dict)
-{
- dict->dupes = 1;
-}
-
-#undef dict_count
-#undef dict_isempty
-#undef dict_isfull
-#undef dnode_get
-#undef dnode_put
-#undef dnode_getkey
-
-dictcount_t dict_count(dict_t *dict)
-{
- return dict->nodecount;
-}
-
-int dict_isempty(dict_t *dict)
-{
- return dict->nodecount == 0;
-}
-
-int dict_isfull(dict_t *dict)
-{
- return dict->nodecount == dict->maxcount;
-}
-
-int dict_contains(dict_t *dict, dnode_t *node)
-{
- return verify_dict_has_node(dict_nil(dict), dict_root(dict), node);
-}
-
-static dnode_t *dnode_alloc(void *context EXT2FS_ATTR((unused)))
-{
- return malloc(sizeof *dnode_alloc(NULL));
-}
-
-static void dnode_free(dnode_t *node, void *context EXT2FS_ATTR((unused)))
-{
- free(node);
-}
-
-dnode_t *dnode_create(void *data)
-{
- dnode_t *new = malloc(sizeof *new);
- if (new) {
- new->data = data;
- new->parent = NULL;
- new->left = NULL;
- new->right = NULL;
- }
- return new;
-}
-
-dnode_t *dnode_init(dnode_t *dnode, void *data)
-{
- dnode->data = data;
- dnode->parent = NULL;
- dnode->left = NULL;
- dnode->right = NULL;
- return dnode;
-}
-
-void dnode_destroy(dnode_t *dnode)
-{
-#ifndef NDEBUG
- assert (!dnode_is_in_a_dict(dnode));
-#endif
- free(dnode);
-}
-
-void *dnode_get(dnode_t *dnode)
-{
- return dnode->data;
-}
-
-const void *dnode_getkey(dnode_t *dnode)
-{
- return dnode->key;
-}
-
-#ifdef E2FSCK_NOTUSED
-void dnode_put(dnode_t *dnode, void *data)
-{
- dnode->data = data;
-}
-
-int dnode_is_in_a_dict(dnode_t *dnode)
-{
- return (dnode->parent && dnode->left && dnode->right);
-}
-
-void dict_process(dict_t *dict, void *context, dnode_process_t function)
-{
- dnode_t *node = dict_first(dict), *next;
-
- while (node != NULL) {
- /* check for callback function deleting */
- /* the next node from under us */
- assert (dict_contains(dict, node));
- next = dict_next(dict, node);
- function(dict, node, context);
- node = next;
- }
-}
-
-static void load_begin_internal(dict_load_t *load, dict_t *dict)
-{
- load->dictptr = dict;
- load->nilnode.left = &load->nilnode;
- load->nilnode.right = &load->nilnode;
-}
-
-void dict_load_begin(dict_load_t *load, dict_t *dict)
-{
- assert (dict_isempty(dict));
- load_begin_internal(load, dict);
-}
-
-void dict_load_next(dict_load_t *load, dnode_t *newnode, const void *key)
-{
- dict_t *dict = load->dictptr;
- dnode_t *nil = &load->nilnode;
-
-#ifndef NDEBUG
- assert (!dnode_is_in_a_dict(newnode));
- assert (dict->nodecount < dict->maxcount);
-
- if (dict->nodecount > 0) {
- if (dict->dupes)
- assert (dict->compare(nil->left->key, key) <= 0);
- else
- assert (dict->compare(nil->left->key, key) < 0);
- }
-#endif
-
- newnode->key = key;
- nil->right->left = newnode;
- nil->right = newnode;
- newnode->left = nil;
- dict->nodecount++;
-}
-
-void dict_load_end(dict_load_t *load)
-{
- dict_t *dict = load->dictptr;
- dnode_t *tree[DICT_DEPTH_MAX] = { 0 };
- dnode_t *curr, *dictnil = dict_nil(dict), *loadnil = &load->nilnode, *next;
- dnode_t *complete = 0;
- dictcount_t fullcount = DICTCOUNT_T_MAX, nodecount = dict->nodecount;
- dictcount_t botrowcount;
- unsigned baselevel = 0, level = 0, i;
-
- assert (dnode_red == 0 && dnode_black == 1);
-
- while (fullcount >= nodecount && fullcount)
- fullcount >>= 1;
-
- botrowcount = nodecount - fullcount;
-
- for (curr = loadnil->left; curr != loadnil; curr = next) {
- next = curr->left;
-
- if (complete == NULL && botrowcount-- == 0) {
- assert (baselevel == 0);
- assert (level == 0);
- baselevel = level = 1;
- complete = tree[0];
-
- if (complete != 0) {
- tree[0] = 0;
- complete->right = dictnil;
- while (tree[level] != 0) {
- tree[level]->right = complete;
- complete->parent = tree[level];
- complete = tree[level];
- tree[level++] = 0;
- }
- }
- }
-
- if (complete == NULL) {
- curr->left = dictnil;
- curr->right = dictnil;
- curr->color = level % 2;
- complete = curr;
-
- assert (level == baselevel);
- while (tree[level] != 0) {
- tree[level]->right = complete;
- complete->parent = tree[level];
- complete = tree[level];
- tree[level++] = 0;
- }
- } else {
- curr->left = complete;
- curr->color = (level + 1) % 2;
- complete->parent = curr;
- tree[level] = curr;
- complete = 0;
- level = baselevel;
- }
- }
-
- if (complete == NULL)
- complete = dictnil;
-
- for (i = 0; i < DICT_DEPTH_MAX; i++) {
- if (tree[i] != 0) {
- tree[i]->right = complete;
- complete->parent = tree[i];
- complete = tree[i];
- }
- }
-
- dictnil->color = dnode_black;
- dictnil->right = dictnil;
- complete->parent = dictnil;
- complete->color = dnode_black;
- dict_root(dict) = complete;
-
-#ifdef E2FSCK_NOTUSED
- assert (dict_verify(dict));
-#endif
-}
-
-void dict_merge(dict_t *dest, dict_t *source)
-{
- dict_load_t load;
- dnode_t *leftnode = dict_first(dest), *rightnode = dict_first(source);
-
- assert (dict_similar(dest, source));
-
- if (source == dest)
- return;
-
- dest->nodecount = 0;
- load_begin_internal(&load, dest);
-
- for (;;) {
- if (leftnode != NULL && rightnode != NULL) {
- if (dest->compare(leftnode->key, rightnode->key) < 0)
- goto copyleft;
- else
- goto copyright;
- } else if (leftnode != NULL) {
- goto copyleft;
- } else if (rightnode != NULL) {
- goto copyright;
- } else {
- assert (leftnode == NULL && rightnode == NULL);
- break;
- }
-
- copyleft:
- {
- dnode_t *next = dict_next(dest, leftnode);
-#ifndef NDEBUG
- leftnode->left = NULL; /* suppress assertion in dict_load_next */
-#endif
- dict_load_next(&load, leftnode, leftnode->key);
- leftnode = next;
- continue;
- }
-
- copyright:
- {
- dnode_t *next = dict_next(source, rightnode);
-#ifndef NDEBUG
- rightnode->left = NULL;
-#endif
- dict_load_next(&load, rightnode, rightnode->key);
- rightnode = next;
- continue;
- }
- }
-
- dict_clear(source);
- dict_load_end(&load);
-}
-#endif /* E2FSCK_NOTUSED */
-
-#ifdef KAZLIB_TEST_MAIN
-
-#include <stdio.h>
-#include <string.h>
-#include <ctype.h>
-#include <stdarg.h>
-
-typedef char input_t[256];
-
-static int tokenize(char *string, ...)
-{
- char **tokptr;
- va_list arglist;
- int tokcount = 0;
-
- va_start(arglist, string);
- tokptr = va_arg(arglist, char **);
- while (tokptr) {
- while (*string && isspace((unsigned char) *string))
- string++;
- if (!*string)
- break;
- *tokptr = string;
- while (*string && !isspace((unsigned char) *string))
- string++;
- tokptr = va_arg(arglist, char **);
- tokcount++;
- if (!*string)
- break;
- *string++ = 0;
- }
- va_end(arglist);
-
- return tokcount;
-}
-
-static int comparef(const void *key1, const void *key2)
-{
- return strcmp(key1, key2);
-}
-
-static char *dupstring(char *str)
-{
- int sz = strlen(str) + 1;
- char *new = malloc(sz);
- if (new)
- memcpy(new, str, sz);
- return new;
-}
-
-static dnode_t *new_node(void *c)
-{
- static dnode_t few[5];
- static int count;
-
- if (count < 5)
- return few + count++;
-
- return NULL;
-}
-
-static void del_node(dnode_t *n, void *c)
-{
-}
-
-static int prompt = 0;
-
-static void construct(dict_t *d)
-{
- input_t in;
- int done = 0;
- dict_load_t dl;
- dnode_t *dn;
- char *tok1, *tok2, *val;
- const char *key;
- char *help =
- "p turn prompt on\n"
- "q finish construction\n"
- "a <key> <val> add new entry\n";
-
- if (!dict_isempty(d))
- puts("warning: dictionary not empty!");
-
- dict_load_begin(&dl, d);
-
- while (!done) {
- if (prompt)
- putchar('>');
- fflush(stdout);
-
- if (!fgets(in, sizeof(input_t), stdin))
- break;
-
- switch (in[0]) {
- case '?':
- puts(help);
- break;
- case 'p':
- prompt = 1;
- break;
- case 'q':
- done = 1;
- break;
- case 'a':
- if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
- puts("what?");
- break;
- }
- key = dupstring(tok1);
- val = dupstring(tok2);
- dn = dnode_create(val);
-
- if (!key || !val || !dn) {
- puts("out of memory");
- free((void *) key);
- free(val);
- if (dn)
- dnode_destroy(dn);
- }
-
- dict_load_next(&dl, dn, key);
- break;
- default:
- putchar('?');
- putchar('\n');
- break;
- }
- }
-
- dict_load_end(&dl);
-}
-
-int main(void)
-{
- input_t in;
- dict_t darray[10];
- dict_t *d = &darray[0];
- dnode_t *dn;
- int i;
- char *tok1, *tok2, *val;
- const char *key;
-
- char *help =
- "a <key> <val> add value to dictionary\n"
- "d <key> delete value from dictionary\n"
- "l <key> lookup value in dictionary\n"
- "( <key> lookup lower bound\n"
- ") <key> lookup upper bound\n"
- "# <num> switch to alternate dictionary (0-9)\n"
- "j <num> <num> merge two dictionaries\n"
- "f free the whole dictionary\n"
- "k allow duplicate keys\n"
- "c show number of entries\n"
- "t dump whole dictionary in sort order\n"
- "m make dictionary out of sorted items\n"
- "p turn prompt on\n"
- "s switch to non-functioning allocator\n"
- "q quit";
-
- for (i = 0; i < sizeof darray / sizeof *darray; i++)
- dict_init(&darray[i], DICTCOUNT_T_MAX, comparef);
-
- for (;;) {
- if (prompt)
- putchar('>');
- fflush(stdout);
-
- if (!fgets(in, sizeof(input_t), stdin))
- break;
-
- switch(in[0]) {
- case '?':
- puts(help);
- break;
- case 'a':
- if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
- puts("what?");
- break;
- }
- key = dupstring(tok1);
- val = dupstring(tok2);
-
- if (!key || !val) {
- puts("out of memory");
- free((void *) key);
- free(val);
- }
-
- if (!dict_alloc_insert(d, key, val)) {
- puts("dict_alloc_insert failed");
- free((void *) key);
- free(val);
- break;
- }
- break;
- case 'd':
- if (tokenize(in+1, &tok1, (char **) 0) != 1) {
- puts("what?");
- break;
- }
- dn = dict_lookup(d, tok1);
- if (!dn) {
- puts("dict_lookup failed");
- break;
- }
- val = dnode_get(dn);
- key = dnode_getkey(dn);
- dict_delete_free(d, dn);
-
- free(val);
- free((void *) key);
- break;
- case 'f':
- dict_free(d);
- break;
- case 'l':
- case '(':
- case ')':
- if (tokenize(in+1, &tok1, (char **) 0) != 1) {
- puts("what?");
- break;
- }
- dn = 0;
- switch (in[0]) {
- case 'l':
- dn = dict_lookup(d, tok1);
- break;
- case '(':
- dn = dict_lower_bound(d, tok1);
- break;
- case ')':
- dn = dict_upper_bound(d, tok1);
- break;
- }
- if (!dn) {
- puts("lookup failed");
- break;
- }
- val = dnode_get(dn);
- puts(val);
- break;
- case 'm':
- construct(d);
- break;
- case 'k':
- dict_allow_dupes(d);
- break;
- case 'c':
- printf("%lu\n", (unsigned long) dict_count(d));
- break;
- case 't':
- for (dn = dict_first(d); dn; dn = dict_next(d, dn)) {
- printf("%s\t%s\n", (char *) dnode_getkey(dn),
- (char *) dnode_get(dn));
- }
- break;
- case 'q':
- exit(0);
- break;
- case '\0':
- break;
- case 'p':
- prompt = 1;
- break;
- case 's':
- dict_set_allocator(d, new_node, del_node, NULL);
- break;
- case '#':
- if (tokenize(in+1, &tok1, (char **) 0) != 1) {
- puts("what?");
- break;
- } else {
- int dictnum = atoi(tok1);
- if (dictnum < 0 || dictnum > 9) {
- puts("invalid number");
- break;
- }
- d = &darray[dictnum];
- }
- break;
- case 'j':
- if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
- puts("what?");
- break;
- } else {
- int dict1 = atoi(tok1), dict2 = atoi(tok2);
- if (dict1 < 0 || dict1 > 9 || dict2 < 0 || dict2 > 9) {
- puts("invalid number");
- break;
- }
- dict_merge(&darray[dict1], &darray[dict2]);
- }
- break;
- default:
- putchar('?');
- putchar('\n');
- break;
- }
- }
-
- return 0;
-}
-
-#endif