diff options
author | Denys Vlasenko | 2010-11-03 02:38:31 +0100 |
---|---|---|
committer | Denys Vlasenko | 2010-11-03 02:38:31 +0100 |
commit | 833d4e7f84f59099ee66eabfa3457ebb7d37eaa8 (patch) | |
tree | 3be84e1049707ce8077291065fe3689497c69b9c /archival/libunarchive/unxz/xz_dec_lzma2.c | |
parent | 5e9934028aa030312a1a2e2e32d5ceade8672beb (diff) | |
download | busybox-833d4e7f84f59099ee66eabfa3457ebb7d37eaa8.zip busybox-833d4e7f84f59099ee66eabfa3457ebb7d37eaa8.tar.gz |
rename archival/libunarchive -> archival/libarchive; move bz/ into it
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Diffstat (limited to 'archival/libunarchive/unxz/xz_dec_lzma2.c')
-rw-r--r-- | archival/libunarchive/unxz/xz_dec_lzma2.c | 1175 |
1 files changed, 0 insertions, 1175 deletions
diff --git a/archival/libunarchive/unxz/xz_dec_lzma2.c b/archival/libunarchive/unxz/xz_dec_lzma2.c deleted file mode 100644 index da71cb4..0000000 --- a/archival/libunarchive/unxz/xz_dec_lzma2.c +++ /dev/null @@ -1,1175 +0,0 @@ -/* - * LZMA2 decoder - * - * Authors: Lasse Collin <lasse.collin@tukaani.org> - * Igor Pavlov <http://7-zip.org/> - * - * This file has been put into the public domain. - * You can do whatever you want with this file. - */ - -#include "xz_private.h" -#include "xz_lzma2.h" - -/* - * Range decoder initialization eats the first five bytes of each LZMA chunk. - */ -#define RC_INIT_BYTES 5 - -/* - * Minimum number of usable input buffer to safely decode one LZMA symbol. - * The worst case is that we decode 22 bits using probabilities and 26 - * direct bits. This may decode at maximum of 20 bytes of input. However, - * lzma_main() does an extra normalization before returning, thus we - * need to put 21 here. - */ -#define LZMA_IN_REQUIRED 21 - -/* - * Dictionary (history buffer) - * - * These are always true: - * start <= pos <= full <= end - * pos <= limit <= end - * - * In multi-call mode, also these are true: - * end == size - * size <= size_max - * allocated <= size - * - * Most of these variables are size_t to support single-call mode, - * in which the dictionary variables address the actual output - * buffer directly. - */ -struct dictionary { - /* Beginning of the history buffer */ - uint8_t *buf; - - /* Old position in buf (before decoding more data) */ - size_t start; - - /* Position in buf */ - size_t pos; - - /* - * How full dictionary is. This is used to detect corrupt input that - * would read beyond the beginning of the uncompressed stream. - */ - size_t full; - - /* Write limit; we don't write to buf[limit] or later bytes. */ - size_t limit; - - /* - * End of the dictionary buffer. In multi-call mode, this is - * the same as the dictionary size. In single-call mode, this - * indicates the size of the output buffer. - */ - size_t end; - - /* - * Size of the dictionary as specified in Block Header. This is used - * together with "full" to detect corrupt input that would make us - * read beyond the beginning of the uncompressed stream. - */ - uint32_t size; - - /* - * Maximum allowed dictionary size in multi-call mode. - * This is ignored in single-call mode. - */ - uint32_t size_max; - - /* - * Amount of memory currently allocated for the dictionary. - * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC, - * size_max is always the same as the allocated size.) - */ - uint32_t allocated; - - /* Operation mode */ - enum xz_mode mode; -}; - -/* Range decoder */ -struct rc_dec { - uint32_t range; - uint32_t code; - - /* - * Number of initializing bytes remaining to be read - * by rc_read_init(). - */ - uint32_t init_bytes_left; - - /* - * Buffer from which we read our input. It can be either - * temp.buf or the caller-provided input buffer. - */ - const uint8_t *in; - size_t in_pos; - size_t in_limit; -}; - -/* Probabilities for a length decoder. */ -struct lzma_len_dec { - /* Probability of match length being at least 10 */ - uint16_t choice; - - /* Probability of match length being at least 18 */ - uint16_t choice2; - - /* Probabilities for match lengths 2-9 */ - uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS]; - - /* Probabilities for match lengths 10-17 */ - uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS]; - - /* Probabilities for match lengths 18-273 */ - uint16_t high[LEN_HIGH_SYMBOLS]; -}; - -struct lzma_dec { - /* Distances of latest four matches */ - uint32_t rep0; - uint32_t rep1; - uint32_t rep2; - uint32_t rep3; - - /* Types of the most recently seen LZMA symbols */ - enum lzma_state state; - - /* - * Length of a match. This is updated so that dict_repeat can - * be called again to finish repeating the whole match. - */ - uint32_t len; - - /* - * LZMA properties or related bit masks (number of literal - * context bits, a mask dervied from the number of literal - * position bits, and a mask dervied from the number - * position bits) - */ - uint32_t lc; - uint32_t literal_pos_mask; /* (1 << lp) - 1 */ - uint32_t pos_mask; /* (1 << pb) - 1 */ - - /* If 1, it's a match. Otherwise it's a single 8-bit literal. */ - uint16_t is_match[STATES][POS_STATES_MAX]; - - /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */ - uint16_t is_rep[STATES]; - - /* - * If 0, distance of a repeated match is rep0. - * Otherwise check is_rep1. - */ - uint16_t is_rep0[STATES]; - - /* - * If 0, distance of a repeated match is rep1. - * Otherwise check is_rep2. - */ - uint16_t is_rep1[STATES]; - - /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */ - uint16_t is_rep2[STATES]; - - /* - * If 1, the repeated match has length of one byte. Otherwise - * the length is decoded from rep_len_decoder. - */ - uint16_t is_rep0_long[STATES][POS_STATES_MAX]; - - /* - * Probability tree for the highest two bits of the match - * distance. There is a separate probability tree for match - * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273]. - */ - uint16_t dist_slot[DIST_STATES][DIST_SLOTS]; - - /* - * Probility trees for additional bits for match distance - * when the distance is in the range [4, 127]. - */ - uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END]; - - /* - * Probability tree for the lowest four bits of a match - * distance that is equal to or greater than 128. - */ - uint16_t dist_align[ALIGN_SIZE]; - - /* Length of a normal match */ - struct lzma_len_dec match_len_dec; - - /* Length of a repeated match */ - struct lzma_len_dec rep_len_dec; - - /* Probabilities of literals */ - uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE]; -}; - -struct lzma2_dec { - /* Position in xz_dec_lzma2_run(). */ - enum lzma2_seq { - SEQ_CONTROL, - SEQ_UNCOMPRESSED_1, - SEQ_UNCOMPRESSED_2, - SEQ_COMPRESSED_0, - SEQ_COMPRESSED_1, - SEQ_PROPERTIES, - SEQ_LZMA_PREPARE, - SEQ_LZMA_RUN, - SEQ_COPY - } sequence; - - /* Next position after decoding the compressed size of the chunk. */ - enum lzma2_seq next_sequence; - - /* Uncompressed size of LZMA chunk (2 MiB at maximum) */ - uint32_t uncompressed; - - /* - * Compressed size of LZMA chunk or compressed/uncompressed - * size of uncompressed chunk (64 KiB at maximum) - */ - uint32_t compressed; - - /* - * True if dictionary reset is needed. This is false before - * the first chunk (LZMA or uncompressed). - */ - bool need_dict_reset; - - /* - * True if new LZMA properties are needed. This is false - * before the first LZMA chunk. - */ - bool need_props; -}; - -struct xz_dec_lzma2 { - /* - * The order below is important on x86 to reduce code size and - * it shouldn't hurt on other platforms. Everything up to and - * including lzma.pos_mask are in the first 128 bytes on x86-32, - * which allows using smaller instructions to access those - * variables. On x86-64, fewer variables fit into the first 128 - * bytes, but this is still the best order without sacrificing - * the readability by splitting the structures. - */ - struct rc_dec rc; - struct dictionary dict; - struct lzma2_dec lzma2; - struct lzma_dec lzma; - - /* - * Temporary buffer which holds small number of input bytes between - * decoder calls. See lzma2_lzma() for details. - */ - struct { - uint32_t size; - uint8_t buf[3 * LZMA_IN_REQUIRED]; - } temp; -}; - -/************** - * Dictionary * - **************/ - -/* - * Reset the dictionary state. When in single-call mode, set up the beginning - * of the dictionary to point to the actual output buffer. - */ -static void XZ_FUNC dict_reset(struct dictionary *dict, struct xz_buf *b) -{ - if (DEC_IS_SINGLE(dict->mode)) { - dict->buf = b->out + b->out_pos; - dict->end = b->out_size - b->out_pos; - } - - dict->start = 0; - dict->pos = 0; - dict->limit = 0; - dict->full = 0; -} - -/* Set dictionary write limit */ -static void XZ_FUNC dict_limit(struct dictionary *dict, size_t out_max) -{ - if (dict->end - dict->pos <= out_max) - dict->limit = dict->end; - else - dict->limit = dict->pos + out_max; -} - -/* Return true if at least one byte can be written into the dictionary. */ -static __always_inline bool XZ_FUNC dict_has_space(const struct dictionary *dict) -{ - return dict->pos < dict->limit; -} - -/* - * Get a byte from the dictionary at the given distance. The distance is - * assumed to valid, or as a special case, zero when the dictionary is - * still empty. This special case is needed for single-call decoding to - * avoid writing a '\0' to the end of the destination buffer. - */ -static __always_inline uint32_t XZ_FUNC dict_get( - const struct dictionary *dict, uint32_t dist) -{ - size_t offset = dict->pos - dist - 1; - - if (dist >= dict->pos) - offset += dict->end; - - return dict->full > 0 ? dict->buf[offset] : 0; -} - -/* - * Put one byte into the dictionary. It is assumed that there is space for it. - */ -static inline void XZ_FUNC dict_put(struct dictionary *dict, uint8_t byte) -{ - dict->buf[dict->pos++] = byte; - - if (dict->full < dict->pos) - dict->full = dict->pos; -} - -/* - * Repeat given number of bytes from the given distance. If the distance is - * invalid, false is returned. On success, true is returned and *len is - * updated to indicate how many bytes were left to be repeated. - */ -static bool XZ_FUNC dict_repeat( - struct dictionary *dict, uint32_t *len, uint32_t dist) -{ - size_t back; - uint32_t left; - - if (dist >= dict->full || dist >= dict->size) - return false; - - left = min_t(size_t, dict->limit - dict->pos, *len); - *len -= left; - - back = dict->pos - dist - 1; - if (dist >= dict->pos) - back += dict->end; - - do { - dict->buf[dict->pos++] = dict->buf[back++]; - if (back == dict->end) - back = 0; - } while (--left > 0); - - if (dict->full < dict->pos) - dict->full = dict->pos; - - return true; -} - -/* Copy uncompressed data as is from input to dictionary and output buffers. */ -static void XZ_FUNC dict_uncompressed( - struct dictionary *dict, struct xz_buf *b, uint32_t *left) -{ - size_t copy_size; - - while (*left > 0 && b->in_pos < b->in_size - && b->out_pos < b->out_size) { - copy_size = min(b->in_size - b->in_pos, - b->out_size - b->out_pos); - if (copy_size > dict->end - dict->pos) - copy_size = dict->end - dict->pos; - if (copy_size > *left) - copy_size = *left; - - *left -= copy_size; - - memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size); - dict->pos += copy_size; - - if (dict->full < dict->pos) - dict->full = dict->pos; - - if (DEC_IS_MULTI(dict->mode)) { - if (dict->pos == dict->end) - dict->pos = 0; - - memcpy(b->out + b->out_pos, b->in + b->in_pos, - copy_size); - } - - dict->start = dict->pos; - - b->out_pos += copy_size; - b->in_pos += copy_size; - - } -} - -/* - * Flush pending data from dictionary to b->out. It is assumed that there is - * enough space in b->out. This is guaranteed because caller uses dict_limit() - * before decoding data into the dictionary. - */ -static uint32_t XZ_FUNC dict_flush(struct dictionary *dict, struct xz_buf *b) -{ - size_t copy_size = dict->pos - dict->start; - - if (DEC_IS_MULTI(dict->mode)) { - if (dict->pos == dict->end) - dict->pos = 0; - - memcpy(b->out + b->out_pos, dict->buf + dict->start, - copy_size); - } - - dict->start = dict->pos; - b->out_pos += copy_size; - return copy_size; -} - -/***************** - * Range decoder * - *****************/ - -/* Reset the range decoder. */ -static void XZ_FUNC rc_reset(struct rc_dec *rc) -{ - rc->range = (uint32_t)-1; - rc->code = 0; - rc->init_bytes_left = RC_INIT_BYTES; -} - -/* - * Read the first five initial bytes into rc->code if they haven't been - * read already. (Yes, the first byte gets completely ignored.) - */ -static bool XZ_FUNC rc_read_init(struct rc_dec *rc, struct xz_buf *b) -{ - while (rc->init_bytes_left > 0) { - if (b->in_pos == b->in_size) - return false; - - rc->code = (rc->code << 8) + b->in[b->in_pos++]; - --rc->init_bytes_left; - } - - return true; -} - -/* Return true if there may not be enough input for the next decoding loop. */ -static inline bool XZ_FUNC rc_limit_exceeded(const struct rc_dec *rc) -{ - return rc->in_pos > rc->in_limit; -} - -/* - * Return true if it is possible (from point of view of range decoder) that - * we have reached the end of the LZMA chunk. - */ -static inline bool XZ_FUNC rc_is_finished(const struct rc_dec *rc) -{ - return rc->code == 0; -} - -/* Read the next input byte if needed. */ -static __always_inline void XZ_FUNC rc_normalize(struct rc_dec *rc) -{ - if (rc->range < RC_TOP_VALUE) { - rc->range <<= RC_SHIFT_BITS; - rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++]; - } -} - -/* - * Decode one bit. In some versions, this function has been splitted in three - * functions so that the compiler is supposed to be able to more easily avoid - * an extra branch. In this particular version of the LZMA decoder, this - * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3 - * on x86). Using a non-splitted version results in nicer looking code too. - * - * NOTE: This must return an int. Do not make it return a bool or the speed - * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care, - * and it generates 10-20 % faster code than GCC 3.x from this file anyway.) - */ -static __always_inline int XZ_FUNC rc_bit(struct rc_dec *rc, uint16_t *prob) -{ - uint32_t bound; - int bit; - - rc_normalize(rc); - bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob; - if (rc->code < bound) { - rc->range = bound; - *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS; - bit = 0; - } else { - rc->range -= bound; - rc->code -= bound; - *prob -= *prob >> RC_MOVE_BITS; - bit = 1; - } - - return bit; -} - -/* Decode a bittree starting from the most significant bit. */ -static __always_inline uint32_t XZ_FUNC rc_bittree( - struct rc_dec *rc, uint16_t *probs, uint32_t limit) -{ - uint32_t symbol = 1; - - do { - if (rc_bit(rc, &probs[symbol])) - symbol = (symbol << 1) + 1; - else - symbol <<= 1; - } while (symbol < limit); - - return symbol; -} - -/* Decode a bittree starting from the least significant bit. */ -static __always_inline void XZ_FUNC rc_bittree_reverse(struct rc_dec *rc, - uint16_t *probs, uint32_t *dest, uint32_t limit) -{ - uint32_t symbol = 1; - uint32_t i = 0; - - do { - if (rc_bit(rc, &probs[symbol])) { - symbol = (symbol << 1) + 1; - *dest += 1 << i; - } else { - symbol <<= 1; - } - } while (++i < limit); -} - -/* Decode direct bits (fixed fifty-fifty probability) */ -static inline void XZ_FUNC rc_direct( - struct rc_dec *rc, uint32_t *dest, uint32_t limit) -{ - uint32_t mask; - - do { - rc_normalize(rc); - rc->range >>= 1; - rc->code -= rc->range; - mask = (uint32_t)0 - (rc->code >> 31); - rc->code += rc->range & mask; - *dest = (*dest << 1) + (mask + 1); - } while (--limit > 0); -} - -/******** - * LZMA * - ********/ - -/* Get pointer to literal coder probability array. */ -static uint16_t * XZ_FUNC lzma_literal_probs(struct xz_dec_lzma2 *s) -{ - uint32_t prev_byte = dict_get(&s->dict, 0); - uint32_t low = prev_byte >> (8 - s->lzma.lc); - uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc; - return s->lzma.literal[low + high]; -} - -/* Decode a literal (one 8-bit byte) */ -static void XZ_FUNC lzma_literal(struct xz_dec_lzma2 *s) -{ - uint16_t *probs; - uint32_t symbol; - uint32_t match_byte; - uint32_t match_bit; - uint32_t offset; - uint32_t i; - - probs = lzma_literal_probs(s); - - if (lzma_state_is_literal(s->lzma.state)) { - symbol = rc_bittree(&s->rc, probs, 0x100); - } else { - symbol = 1; - match_byte = dict_get(&s->dict, s->lzma.rep0) << 1; - offset = 0x100; - - do { - match_bit = match_byte & offset; - match_byte <<= 1; - i = offset + match_bit + symbol; - - if (rc_bit(&s->rc, &probs[i])) { - symbol = (symbol << 1) + 1; - offset &= match_bit; - } else { - symbol <<= 1; - offset &= ~match_bit; - } - } while (symbol < 0x100); - } - - dict_put(&s->dict, (uint8_t)symbol); - lzma_state_literal(&s->lzma.state); -} - -/* Decode the length of the match into s->lzma.len. */ -static void XZ_FUNC lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l, - uint32_t pos_state) -{ - uint16_t *probs; - uint32_t limit; - - if (!rc_bit(&s->rc, &l->choice)) { - probs = l->low[pos_state]; - limit = LEN_LOW_SYMBOLS; - s->lzma.len = MATCH_LEN_MIN; - } else { - if (!rc_bit(&s->rc, &l->choice2)) { - probs = l->mid[pos_state]; - limit = LEN_MID_SYMBOLS; - s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; - } else { - probs = l->high; - limit = LEN_HIGH_SYMBOLS; - s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS - + LEN_MID_SYMBOLS; - } - } - - s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit; -} - -/* Decode a match. The distance will be stored in s->lzma.rep0. */ -static void XZ_FUNC lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state) -{ - uint16_t *probs; - uint32_t dist_slot; - uint32_t limit; - - lzma_state_match(&s->lzma.state); - - s->lzma.rep3 = s->lzma.rep2; - s->lzma.rep2 = s->lzma.rep1; - s->lzma.rep1 = s->lzma.rep0; - - lzma_len(s, &s->lzma.match_len_dec, pos_state); - - probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)]; - dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS; - - if (dist_slot < DIST_MODEL_START) { - s->lzma.rep0 = dist_slot; - } else { - limit = (dist_slot >> 1) - 1; - s->lzma.rep0 = 2 + (dist_slot & 1); - - if (dist_slot < DIST_MODEL_END) { - s->lzma.rep0 <<= limit; - probs = s->lzma.dist_special + s->lzma.rep0 - - dist_slot - 1; - rc_bittree_reverse(&s->rc, probs, - &s->lzma.rep0, limit); - } else { - rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS); - s->lzma.rep0 <<= ALIGN_BITS; - rc_bittree_reverse(&s->rc, s->lzma.dist_align, - &s->lzma.rep0, ALIGN_BITS); - } - } -} - -/* - * Decode a repeated match. The distance is one of the four most recently - * seen matches. The distance will be stored in s->lzma.rep0. - */ -static void XZ_FUNC lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state) -{ - uint32_t tmp; - - if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) { - if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[ - s->lzma.state][pos_state])) { - lzma_state_short_rep(&s->lzma.state); - s->lzma.len = 1; - return; - } - } else { - if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) { - tmp = s->lzma.rep1; - } else { - if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) { - tmp = s->lzma.rep2; - } else { - tmp = s->lzma.rep3; - s->lzma.rep3 = s->lzma.rep2; - } - - s->lzma.rep2 = s->lzma.rep1; - } - - s->lzma.rep1 = s->lzma.rep0; - s->lzma.rep0 = tmp; - } - - lzma_state_long_rep(&s->lzma.state); - lzma_len(s, &s->lzma.rep_len_dec, pos_state); -} - -/* LZMA decoder core */ -static bool XZ_FUNC lzma_main(struct xz_dec_lzma2 *s) -{ - uint32_t pos_state; - - /* - * If the dictionary was reached during the previous call, try to - * finish the possibly pending repeat in the dictionary. - */ - if (dict_has_space(&s->dict) && s->lzma.len > 0) - dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0); - - /* - * Decode more LZMA symbols. One iteration may consume up to - * LZMA_IN_REQUIRED - 1 bytes. - */ - while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) { - pos_state = s->dict.pos & s->lzma.pos_mask; - - if (!rc_bit(&s->rc, &s->lzma.is_match[ - s->lzma.state][pos_state])) { - lzma_literal(s); - } else { - if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state])) - lzma_rep_match(s, pos_state); - else - lzma_match(s, pos_state); - - if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0)) - return false; - } - } - - /* - * Having the range decoder always normalized when we are outside - * this function makes it easier to correctly handle end of the chunk. - */ - rc_normalize(&s->rc); - - return true; -} - -/* - * Reset the LZMA decoder and range decoder state. Dictionary is nore reset - * here, because LZMA state may be reset without resetting the dictionary. - */ -static void XZ_FUNC lzma_reset(struct xz_dec_lzma2 *s) -{ - uint16_t *probs; - size_t i; - - s->lzma.state = STATE_LIT_LIT; - s->lzma.rep0 = 0; - s->lzma.rep1 = 0; - s->lzma.rep2 = 0; - s->lzma.rep3 = 0; - - /* - * All probabilities are initialized to the same value. This hack - * makes the code smaller by avoiding a separate loop for each - * probability array. - * - * This could be optimized so that only that part of literal - * probabilities that are actually required. In the common case - * we would write 12 KiB less. - */ - probs = s->lzma.is_match[0]; - for (i = 0; i < PROBS_TOTAL; ++i) - probs[i] = RC_BIT_MODEL_TOTAL / 2; - - rc_reset(&s->rc); -} - -/* - * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks - * from the decoded lp and pb values. On success, the LZMA decoder state is - * reset and true is returned. - */ -static bool XZ_FUNC lzma_props(struct xz_dec_lzma2 *s, uint8_t props) -{ - if (props > (4 * 5 + 4) * 9 + 8) - return false; - - s->lzma.pos_mask = 0; - while (props >= 9 * 5) { - props -= 9 * 5; - ++s->lzma.pos_mask; - } - - s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1; - - s->lzma.literal_pos_mask = 0; - while (props >= 9) { - props -= 9; - ++s->lzma.literal_pos_mask; - } - - s->lzma.lc = props; - - if (s->lzma.lc + s->lzma.literal_pos_mask > 4) - return false; - - s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1; - - lzma_reset(s); - - return true; -} - -/********* - * LZMA2 * - *********/ - -/* - * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't - * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This - * wrapper function takes care of making the LZMA decoder's assumption safe. - * - * As long as there is plenty of input left to be decoded in the current LZMA - * chunk, we decode directly from the caller-supplied input buffer until - * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into - * s->temp.buf, which (hopefully) gets filled on the next call to this - * function. We decode a few bytes from the temporary buffer so that we can - * continue decoding from the caller-supplied input buffer again. - */ -static bool XZ_FUNC lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b) -{ - size_t in_avail; - uint32_t tmp; - - in_avail = b->in_size - b->in_pos; - if (s->temp.size > 0 || s->lzma2.compressed == 0) { - tmp = 2 * LZMA_IN_REQUIRED - s->temp.size; - if (tmp > s->lzma2.compressed - s->temp.size) - tmp = s->lzma2.compressed - s->temp.size; - if (tmp > in_avail) - tmp = in_avail; - - memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp); - - if (s->temp.size + tmp == s->lzma2.compressed) { - memzero(s->temp.buf + s->temp.size + tmp, - sizeof(s->temp.buf) - - s->temp.size - tmp); - s->rc.in_limit = s->temp.size + tmp; - } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) { - s->temp.size += tmp; - b->in_pos += tmp; - return true; - } else { - s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED; - } - - s->rc.in = s->temp.buf; - s->rc.in_pos = 0; - - if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp) - return false; - - s->lzma2.compressed -= s->rc.in_pos; - - if (s->rc.in_pos < s->temp.size) { - s->temp.size -= s->rc.in_pos; - memmove(s->temp.buf, s->temp.buf + s->rc.in_pos, - s->temp.size); - return true; - } - - b->in_pos += s->rc.in_pos - s->temp.size; - s->temp.size = 0; - } - - in_avail = b->in_size - b->in_pos; - if (in_avail >= LZMA_IN_REQUIRED) { - s->rc.in = b->in; - s->rc.in_pos = b->in_pos; - - if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED) - s->rc.in_limit = b->in_pos + s->lzma2.compressed; - else - s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED; - - if (!lzma_main(s)) - return false; - - in_avail = s->rc.in_pos - b->in_pos; - if (in_avail > s->lzma2.compressed) - return false; - - s->lzma2.compressed -= in_avail; - b->in_pos = s->rc.in_pos; - } - - in_avail = b->in_size - b->in_pos; - if (in_avail < LZMA_IN_REQUIRED) { - if (in_avail > s->lzma2.compressed) - in_avail = s->lzma2.compressed; - - memcpy(s->temp.buf, b->in + b->in_pos, in_avail); - s->temp.size = in_avail; - b->in_pos += in_avail; - } - - return true; -} - -/* - * Take care of the LZMA2 control layer, and forward the job of actual LZMA - * decoding or copying of uncompressed chunks to other functions. - */ -XZ_EXTERN NOINLINE enum xz_ret XZ_FUNC xz_dec_lzma2_run( - struct xz_dec_lzma2 *s, struct xz_buf *b) -{ - uint32_t tmp; - - while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) { - switch (s->lzma2.sequence) { - case SEQ_CONTROL: - /* - * LZMA2 control byte - * - * Exact values: - * 0x00 End marker - * 0x01 Dictionary reset followed by - * an uncompressed chunk - * 0x02 Uncompressed chunk (no dictionary reset) - * - * Highest three bits (s->control & 0xE0): - * 0xE0 Dictionary reset, new properties and state - * reset, followed by LZMA compressed chunk - * 0xC0 New properties and state reset, followed - * by LZMA compressed chunk (no dictionary - * reset) - * 0xA0 State reset using old properties, - * followed by LZMA compressed chunk (no - * dictionary reset) - * 0x80 LZMA chunk (no dictionary or state reset) - * - * For LZMA compressed chunks, the lowest five bits - * (s->control & 1F) are the highest bits of the - * uncompressed size (bits 16-20). - * - * A new LZMA2 stream must begin with a dictionary - * reset. The first LZMA chunk must set new - * properties and reset the LZMA state. - * - * Values that don't match anything described above - * are invalid and we return XZ_DATA_ERROR. - */ - tmp = b->in[b->in_pos++]; - - if (tmp >= 0xE0 || tmp == 0x01) { - s->lzma2.need_props = true; - s->lzma2.need_dict_reset = false; - dict_reset(&s->dict, b); - } else if (s->lzma2.need_dict_reset) { - return XZ_DATA_ERROR; - } - - if (tmp >= 0x80) { - s->lzma2.uncompressed = (tmp & 0x1F) << 16; - s->lzma2.sequence = SEQ_UNCOMPRESSED_1; - - if (tmp >= 0xC0) { - /* - * When there are new properties, - * state reset is done at - * SEQ_PROPERTIES. - */ - s->lzma2.need_props = false; - s->lzma2.next_sequence - = SEQ_PROPERTIES; - - } else if (s->lzma2.need_props) { - return XZ_DATA_ERROR; - - } else { - s->lzma2.next_sequence - = SEQ_LZMA_PREPARE; - if (tmp >= 0xA0) - lzma_reset(s); - } - } else { - if (tmp == 0x00) - return XZ_STREAM_END; - - if (tmp > 0x02) - return XZ_DATA_ERROR; - - s->lzma2.sequence = SEQ_COMPRESSED_0; - s->lzma2.next_sequence = SEQ_COPY; - } - - break; - - case SEQ_UNCOMPRESSED_1: - s->lzma2.uncompressed - += (uint32_t)b->in[b->in_pos++] << 8; - s->lzma2.sequence = SEQ_UNCOMPRESSED_2; - break; - - case SEQ_UNCOMPRESSED_2: - s->lzma2.uncompressed - += (uint32_t)b->in[b->in_pos++] + 1; - s->lzma2.sequence = SEQ_COMPRESSED_0; - break; - - case SEQ_COMPRESSED_0: - s->lzma2.compressed - = (uint32_t)b->in[b->in_pos++] << 8; - s->lzma2.sequence = SEQ_COMPRESSED_1; - break; - - case SEQ_COMPRESSED_1: - s->lzma2.compressed - += (uint32_t)b->in[b->in_pos++] + 1; - s->lzma2.sequence = s->lzma2.next_sequence; - break; - - case SEQ_PROPERTIES: - if (!lzma_props(s, b->in[b->in_pos++])) - return XZ_DATA_ERROR; - - s->lzma2.sequence = SEQ_LZMA_PREPARE; - - case SEQ_LZMA_PREPARE: - if (s->lzma2.compressed < RC_INIT_BYTES) - return XZ_DATA_ERROR; - - if (!rc_read_init(&s->rc, b)) - return XZ_OK; - - s->lzma2.compressed -= RC_INIT_BYTES; - s->lzma2.sequence = SEQ_LZMA_RUN; - - case SEQ_LZMA_RUN: - /* - * Set dictionary limit to indicate how much we want - * to be encoded at maximum. Decode new data into the - * dictionary. Flush the new data from dictionary to - * b->out. Check if we finished decoding this chunk. - * In case the dictionary got full but we didn't fill - * the output buffer yet, we may run this loop - * multiple times without changing s->lzma2.sequence. - */ - dict_limit(&s->dict, min_t(size_t, - b->out_size - b->out_pos, - s->lzma2.uncompressed)); - if (!lzma2_lzma(s, b)) - return XZ_DATA_ERROR; - - s->lzma2.uncompressed -= dict_flush(&s->dict, b); - - if (s->lzma2.uncompressed == 0) { - if (s->lzma2.compressed > 0 || s->lzma.len > 0 - || !rc_is_finished(&s->rc)) - return XZ_DATA_ERROR; - - rc_reset(&s->rc); - s->lzma2.sequence = SEQ_CONTROL; - - } else if (b->out_pos == b->out_size - || (b->in_pos == b->in_size - && s->temp.size - < s->lzma2.compressed)) { - return XZ_OK; - } - - break; - - case SEQ_COPY: - dict_uncompressed(&s->dict, b, &s->lzma2.compressed); - if (s->lzma2.compressed > 0) - return XZ_OK; - - s->lzma2.sequence = SEQ_CONTROL; - break; - } - } - - return XZ_OK; -} - -XZ_EXTERN struct xz_dec_lzma2 * XZ_FUNC xz_dec_lzma2_create( - enum xz_mode mode, uint32_t dict_max) -{ - struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL); - if (s == NULL) - return NULL; - - s->dict.mode = mode; - s->dict.size_max = dict_max; - - if (DEC_IS_PREALLOC(mode)) { - s->dict.buf = vmalloc(dict_max); - if (s->dict.buf == NULL) { - kfree(s); - return NULL; - } - } else if (DEC_IS_DYNALLOC(mode)) { - s->dict.buf = NULL; - s->dict.allocated = 0; - } - - return s; -} - -XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_lzma2_reset( - struct xz_dec_lzma2 *s, uint8_t props) -{ - /* This limits dictionary size to 3 GiB to keep parsing simpler. */ - if (props > 39) - return XZ_OPTIONS_ERROR; - - s->dict.size = 2 + (props & 1); - s->dict.size <<= (props >> 1) + 11; - - if (DEC_IS_MULTI(s->dict.mode)) { - if (s->dict.size > s->dict.size_max) - return XZ_MEMLIMIT_ERROR; - - s->dict.end = s->dict.size; - - if (DEC_IS_DYNALLOC(s->dict.mode)) { - if (s->dict.allocated < s->dict.size) { - vfree(s->dict.buf); - s->dict.buf = vmalloc(s->dict.size); - if (s->dict.buf == NULL) { - s->dict.allocated = 0; - return XZ_MEM_ERROR; - } - } - } - } - - s->lzma.len = 0; - - s->lzma2.sequence = SEQ_CONTROL; - s->lzma2.need_dict_reset = true; - - s->temp.size = 0; - - return XZ_OK; -} - -XZ_EXTERN void XZ_FUNC xz_dec_lzma2_end(struct xz_dec_lzma2 *s) -{ - if (DEC_IS_MULTI(s->dict.mode)) - vfree(s->dict.buf); - - kfree(s); -} |