diff options
author | Denys Vlasenko | 2021-04-26 20:24:34 +0200 |
---|---|---|
committer | Denys Vlasenko | 2021-04-26 20:24:34 +0200 |
commit | 120401249a37a77cd2d4c71ad20a9a194bfea409 (patch) | |
tree | 45f84378f495d53f6c160f33f117d333c9e2ee58 | |
parent | 93b886f54bf85ca38f372ddd521f7c5bdbdc5d08 (diff) | |
download | busybox-120401249a37a77cd2d4c71ad20a9a194bfea409.zip busybox-120401249a37a77cd2d4c71ad20a9a194bfea409.tar.gz |
tls: fix whitespace in P256 code
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
-rw-r--r-- | networking/tls_sp_c32.c | 1002 |
1 files changed, 501 insertions, 501 deletions
diff --git a/networking/tls_sp_c32.c b/networking/tls_sp_c32.c index 97b2d3d..8527e78 100644 --- a/networking/tls_sp_c32.c +++ b/networking/tls_sp_c32.c @@ -92,30 +92,30 @@ static const sp_point p256_base = { */ static void sp_256_to_bin(sp_digit* r, uint8_t* a) { - int i, j, s = 0, b; - - for (i = 0; i < 9; i++) { - r[i+1] += r[i] >> 26; - r[i] &= 0x3ffffff; - } - j = 256 / 8 - 1; - a[j] = 0; - for (i=0; i<10 && j>=0; i++) { - b = 0; - a[j--] |= r[i] << s; b += 8 - s; - if (j < 0) - break; - while (b < 26) { - a[j--] = r[i] >> b; b += 8; - if (j < 0) - break; - } - s = 8 - (b - 26); - if (j >= 0) - a[j] = 0; - if (s != 0) - j++; - } + int i, j, s = 0, b; + + for (i = 0; i < 9; i++) { + r[i+1] += r[i] >> 26; + r[i] &= 0x3ffffff; + } + j = 256 / 8 - 1; + a[j] = 0; + for (i = 0; i < 10 && j >= 0; i++) { + b = 0; + a[j--] |= r[i] << s; b += 8 - s; + if (j < 0) + break; + while (b < 26) { + a[j--] = r[i] >> b; b += 8; + if (j < 0) + break; + } + s = 8 - (b - 26); + if (j >= 0) + a[j] = 0; + if (s != 0) + j++; + } } /* Read big endian unsigned byte aray into r. @@ -126,37 +126,37 @@ static void sp_256_to_bin(sp_digit* r, uint8_t* a) */ static void sp_256_from_bin(sp_digit* r, int max, const uint8_t* a, int n) { - int i, j = 0, s = 0; - - r[0] = 0; - for (i = n-1; i >= 0; i--) { - r[j] |= ((sp_digit)a[i]) << s; - if (s >= 18) { - r[j] &= 0x3ffffff; - s = 26 - s; - if (j + 1 >= max) - break; - r[++j] = a[i] >> s; - s = 8 - s; - } - else - s += 8; - } + int i, j = 0, s = 0; + + r[0] = 0; + for (i = n-1; i >= 0; i--) { + r[j] |= ((sp_digit)a[i]) << s; + if (s >= 18) { + r[j] &= 0x3ffffff; + s = 26 - s; + if (j + 1 >= max) + break; + r[++j] = a[i] >> s; + s = 8 - s; + } + else + s += 8; + } - for (j++; j < max; j++) - r[j] = 0; + for (j++; j < max; j++) + r[j] = 0; } /* Convert a point of big-endian 32-byte x,y pair to type sp_point. */ static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32) { - memset(p, 0, sizeof(*p)); - /*p->infinity = 0;*/ - sp_256_from_bin(p->x, 2 * 10, bin2x32, 32); - sp_256_from_bin(p->y, 2 * 10, bin2x32 + 32, 32); - //static const uint8_t one[1] = { 1 }; - //sp_256_from_bin(p->z, 2 * 10, one, 1); - p->z[0] = 1; + memset(p, 0, sizeof(*p)); + /*p->infinity = 0;*/ + sp_256_from_bin(p->x, 2 * 10, bin2x32, 32); + sp_256_from_bin(p->y, 2 * 10, bin2x32 + 32, 32); + //static const uint8_t one[1] = { 1 }; + //sp_256_from_bin(p->z, 2 * 10, one, 1); + p->z[0] = 1; } /* Compare a with b. @@ -166,14 +166,14 @@ static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32) */ static sp_digit sp_256_cmp_10(const sp_digit* a, const sp_digit* b) { - sp_digit r; - int i; - for (i = 9; i >= 0; i--) { - r = a[i] - b[i]; - if (r != 0) - break; - } - return r; + sp_digit r; + int i; + for (i = 9; i >= 0; i--) { + r = a[i] - b[i]; + if (r != 0) + break; + } + return r; } /* Compare two numbers to determine if they are equal. @@ -182,56 +182,56 @@ static sp_digit sp_256_cmp_10(const sp_digit* a, const sp_digit* b) */ static int sp_256_cmp_equal_10(const sp_digit* a, const sp_digit* b) { - return sp_256_cmp_10(a, b) == 0; + return sp_256_cmp_10(a, b) == 0; } /* Normalize the values in each word to 26 bits. */ static void sp_256_norm_10(sp_digit* a) { - int i; - for (i = 0; i < 9; i++) { - a[i+1] += a[i] >> 26; - a[i] &= 0x3ffffff; - } + int i; + for (i = 0; i < 9; i++) { + a[i+1] += a[i] >> 26; + a[i] &= 0x3ffffff; + } } /* Add b to a into r. (r = a + b) */ static void sp_256_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b) { - int i; - for (i = 0; i < 10; i++) - r[i] = a[i] + b[i]; + int i; + for (i = 0; i < 10; i++) + r[i] = a[i] + b[i]; } /* Conditionally add a and b using the mask m. * m is -1 to add and 0 when not. */ static void sp_256_cond_add_10(sp_digit* r, const sp_digit* a, - const sp_digit* b, const sp_digit m) + const sp_digit* b, const sp_digit m) { - int i; - for (i = 0; i < 10; i++) - r[i] = a[i] + (b[i] & m); + int i; + for (i = 0; i < 10; i++) + r[i] = a[i] + (b[i] & m); } /* Conditionally subtract b from a using the mask m. * m is -1 to subtract and 0 when not. */ static void sp_256_cond_sub_10(sp_digit* r, const sp_digit* a, - const sp_digit* b, const sp_digit m) + const sp_digit* b, const sp_digit m) { - int i; - for (i = 0; i < 10; i++) - r[i] = a[i] - (b[i] & m); + int i; + for (i = 0; i < 10; i++) + r[i] = a[i] - (b[i] & m); } /* Shift number left one bit. Bottom bit is lost. */ static void sp_256_rshift1_10(sp_digit* r, sp_digit* a) { - int i; - for (i = 0; i < 9; i++) - r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff; - r[9] = a[9] >> 1; + int i; + for (i = 0; i < 9; i++) + r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff; + r[9] = a[9] >> 1; } /* Multiply a number by Montogmery normalizer mod modulus (prime). @@ -241,188 +241,188 @@ static void sp_256_rshift1_10(sp_digit* r, sp_digit* a) */ static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a) { - int64_t t[8]; - int64_t a32[8]; - int64_t o; - - a32[0] = a[0]; - a32[0] |= a[1] << 26; - a32[0] &= 0xffffffff; - a32[1] = (sp_digit)(a[1] >> 6); - a32[1] |= a[2] << 20; - a32[1] &= 0xffffffff; - a32[2] = (sp_digit)(a[2] >> 12); - a32[2] |= a[3] << 14; - a32[2] &= 0xffffffff; - a32[3] = (sp_digit)(a[3] >> 18); - a32[3] |= a[4] << 8; - a32[3] &= 0xffffffff; - a32[4] = (sp_digit)(a[4] >> 24); - a32[4] |= a[5] << 2; - a32[4] |= a[6] << 28; - a32[4] &= 0xffffffff; - a32[5] = (sp_digit)(a[6] >> 4); - a32[5] |= a[7] << 22; - a32[5] &= 0xffffffff; - a32[6] = (sp_digit)(a[7] >> 10); - a32[6] |= a[8] << 16; - a32[6] &= 0xffffffff; - a32[7] = (sp_digit)(a[8] >> 16); - a32[7] |= a[9] << 10; - a32[7] &= 0xffffffff; - - /* 1 1 0 -1 -1 -1 -1 0 */ - t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6]; - /* 0 1 1 0 -1 -1 -1 -1 */ - t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7]; - /* 0 0 1 1 0 -1 -1 -1 */ - t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7]; - /* -1 -1 0 2 2 1 0 -1 */ - t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7]; - /* 0 -1 -1 0 2 2 1 0 */ - t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6]; - /* 0 0 -1 -1 0 2 2 1 */ - t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7]; - /* -1 -1 0 0 0 1 3 2 */ - t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7]; - /* 1 0 -1 -1 -1 -1 0 3 */ - t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7]; - - t[1] += t[0] >> 32; t[0] &= 0xffffffff; - t[2] += t[1] >> 32; t[1] &= 0xffffffff; - t[3] += t[2] >> 32; t[2] &= 0xffffffff; - t[4] += t[3] >> 32; t[3] &= 0xffffffff; - t[5] += t[4] >> 32; t[4] &= 0xffffffff; - t[6] += t[5] >> 32; t[5] &= 0xffffffff; - t[7] += t[6] >> 32; t[6] &= 0xffffffff; - o = t[7] >> 32; t[7] &= 0xffffffff; - t[0] += o; - t[3] -= o; - t[6] -= o; - t[7] += o; - t[1] += t[0] >> 32; t[0] &= 0xffffffff; - t[2] += t[1] >> 32; t[1] &= 0xffffffff; - t[3] += t[2] >> 32; t[2] &= 0xffffffff; - t[4] += t[3] >> 32; t[3] &= 0xffffffff; - t[5] += t[4] >> 32; t[4] &= 0xffffffff; - t[6] += t[5] >> 32; t[5] &= 0xffffffff; - t[7] += t[6] >> 32; t[6] &= 0xffffffff; - - r[0] = (sp_digit)(t[0]) & 0x3ffffff; - r[1] = (sp_digit)(t[0] >> 26); - r[1] |= t[1] << 6; - r[1] &= 0x3ffffff; - r[2] = (sp_digit)(t[1] >> 20); - r[2] |= t[2] << 12; - r[2] &= 0x3ffffff; - r[3] = (sp_digit)(t[2] >> 14); - r[3] |= t[3] << 18; - r[3] &= 0x3ffffff; - r[4] = (sp_digit)(t[3] >> 8); - r[4] |= t[4] << 24; - r[4] &= 0x3ffffff; - r[5] = (sp_digit)(t[4] >> 2) & 0x3ffffff; - r[6] = (sp_digit)(t[4] >> 28); - r[6] |= t[5] << 4; - r[6] &= 0x3ffffff; - r[7] = (sp_digit)(t[5] >> 22); - r[7] |= t[6] << 10; - r[7] &= 0x3ffffff; - r[8] = (sp_digit)(t[6] >> 16); - r[8] |= t[7] << 16; - r[8] &= 0x3ffffff; - r[9] = (sp_digit)(t[7] >> 10); + int64_t t[8]; + int64_t a32[8]; + int64_t o; + + a32[0] = a[0]; + a32[0] |= a[1] << 26; + a32[0] &= 0xffffffff; + a32[1] = (sp_digit)(a[1] >> 6); + a32[1] |= a[2] << 20; + a32[1] &= 0xffffffff; + a32[2] = (sp_digit)(a[2] >> 12); + a32[2] |= a[3] << 14; + a32[2] &= 0xffffffff; + a32[3] = (sp_digit)(a[3] >> 18); + a32[3] |= a[4] << 8; + a32[3] &= 0xffffffff; + a32[4] = (sp_digit)(a[4] >> 24); + a32[4] |= a[5] << 2; + a32[4] |= a[6] << 28; + a32[4] &= 0xffffffff; + a32[5] = (sp_digit)(a[6] >> 4); + a32[5] |= a[7] << 22; + a32[5] &= 0xffffffff; + a32[6] = (sp_digit)(a[7] >> 10); + a32[6] |= a[8] << 16; + a32[6] &= 0xffffffff; + a32[7] = (sp_digit)(a[8] >> 16); + a32[7] |= a[9] << 10; + a32[7] &= 0xffffffff; + + /* 1 1 0 -1 -1 -1 -1 0 */ + t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6]; + /* 0 1 1 0 -1 -1 -1 -1 */ + t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7]; + /* 0 0 1 1 0 -1 -1 -1 */ + t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7]; + /* -1 -1 0 2 2 1 0 -1 */ + t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7]; + /* 0 -1 -1 0 2 2 1 0 */ + t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6]; + /* 0 0 -1 -1 0 2 2 1 */ + t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7]; + /* -1 -1 0 0 0 1 3 2 */ + t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7]; + /* 1 0 -1 -1 -1 -1 0 3 */ + t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7]; + + t[1] += t[0] >> 32; t[0] &= 0xffffffff; + t[2] += t[1] >> 32; t[1] &= 0xffffffff; + t[3] += t[2] >> 32; t[2] &= 0xffffffff; + t[4] += t[3] >> 32; t[3] &= 0xffffffff; + t[5] += t[4] >> 32; t[4] &= 0xffffffff; + t[6] += t[5] >> 32; t[5] &= 0xffffffff; + t[7] += t[6] >> 32; t[6] &= 0xffffffff; + o = t[7] >> 32; t[7] &= 0xffffffff; + t[0] += o; + t[3] -= o; + t[6] -= o; + t[7] += o; + t[1] += t[0] >> 32; t[0] &= 0xffffffff; + t[2] += t[1] >> 32; t[1] &= 0xffffffff; + t[3] += t[2] >> 32; t[2] &= 0xffffffff; + t[4] += t[3] >> 32; t[3] &= 0xffffffff; + t[5] += t[4] >> 32; t[4] &= 0xffffffff; + t[6] += t[5] >> 32; t[5] &= 0xffffffff; + t[7] += t[6] >> 32; t[6] &= 0xffffffff; + + r[0] = (sp_digit)(t[0]) & 0x3ffffff; + r[1] = (sp_digit)(t[0] >> 26); + r[1] |= t[1] << 6; + r[1] &= 0x3ffffff; + r[2] = (sp_digit)(t[1] >> 20); + r[2] |= t[2] << 12; + r[2] &= 0x3ffffff; + r[3] = (sp_digit)(t[2] >> 14); + r[3] |= t[3] << 18; + r[3] &= 0x3ffffff; + r[4] = (sp_digit)(t[3] >> 8); + r[4] |= t[4] << 24; + r[4] &= 0x3ffffff; + r[5] = (sp_digit)(t[4] >> 2) & 0x3ffffff; + r[6] = (sp_digit)(t[4] >> 28); + r[6] |= t[5] << 4; + r[6] &= 0x3ffffff; + r[7] = (sp_digit)(t[5] >> 22); + r[7] |= t[6] << 10; + r[7] &= 0x3ffffff; + r[8] = (sp_digit)(t[6] >> 16); + r[8] |= t[7] << 16; + r[8] &= 0x3ffffff; + r[9] = (sp_digit)(t[7] >> 10); } /* Mul a by scalar b and add into r. (r += a * b) */ static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b) { - int64_t tb = b; - int64_t t = 0; - int i; + int64_t tb = b; + int64_t t = 0; + int i; - for (i = 0; i < 10; i++) { - t += (tb * a[i]) + r[i]; - r[i] = t & 0x3ffffff; - t >>= 26; - } - r[10] += t; + for (i = 0; i < 10; i++) { + t += (tb * a[i]) + r[i]; + r[i] = t & 0x3ffffff; + t >>= 26; + } + r[10] += t; } /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */ static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m) { - sp_256_cond_add_10(r, a, m, 0 - (a[0] & 1)); - sp_256_norm_10(r); - sp_256_rshift1_10(r, r); + sp_256_cond_add_10(r, a, m, 0 - (a[0] & 1)); + sp_256_norm_10(r); + sp_256_rshift1_10(r, r); } /* Shift the result in the high 256 bits down to the bottom. */ static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a) { - int i; - sp_digit n, s; + int i; + sp_digit n, s; - s = a[10]; - n = a[9] >> 22; - for (i = 0; i < 9; i++) { - n += (s & 0x3ffffff) << 4; - r[i] = n & 0x3ffffff; - n >>= 26; - s = a[11 + i] + (s >> 26); - } - n += s << 4; - r[9] = n; - memset(&r[10], 0, sizeof(*r) * 10); + s = a[10]; + n = a[9] >> 22; + for (i = 0; i < 9; i++) { + n += (s & 0x3ffffff) << 4; + r[i] = n & 0x3ffffff; + n >>= 26; + s = a[11 + i] + (s >> 26); + } + n += s << 4; + r[9] = n; + memset(&r[10], 0, sizeof(*r) * 10); } /* Add two Montgomery form numbers (r = a + b % m) */ static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b, - const sp_digit* m) + const sp_digit* m) { - sp_256_add_10(r, a, b); - sp_256_norm_10(r); - sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); - sp_256_norm_10(r); + sp_256_add_10(r, a, b); + sp_256_norm_10(r); + sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); + sp_256_norm_10(r); } /* Double a Montgomery form number (r = a + a % m) */ static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) { - sp_256_add_10(r, a, a); - sp_256_norm_10(r); - sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); - sp_256_norm_10(r); + sp_256_add_10(r, a, a); + sp_256_norm_10(r); + sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); + sp_256_norm_10(r); } /* Triple a Montgomery form number (r = a + a + a % m) */ static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) { - sp_256_add_10(r, a, a); - sp_256_norm_10(r); - sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); - sp_256_norm_10(r); - sp_256_add_10(r, r, a); - sp_256_norm_10(r); - sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); - sp_256_norm_10(r); + sp_256_add_10(r, a, a); + sp_256_norm_10(r); + sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); + sp_256_norm_10(r); + sp_256_add_10(r, r, a); + sp_256_norm_10(r); + sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); + sp_256_norm_10(r); } /* Sub b from a into r. (r = a - b) */ static void sp_256_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b) { - int i; - for (i = 0; i < 10; i++) - r[i] = a[i] - b[i]; + int i; + for (i = 0; i < 10; i++) + r[i] = a[i] - b[i]; } /* Subtract two Montgomery form numbers (r = a - b % m) */ static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b, - const sp_digit* m) + const sp_digit* m) { - sp_256_sub_10(r, a, b); - sp_256_cond_add_10(r, r, m, r[9] >> 22); - sp_256_norm_10(r); + sp_256_sub_10(r, a, b); + sp_256_cond_add_10(r, r, m, r[9] >> 22); + sp_256_norm_10(r); } /* Reduce the number back to 256 bits using Montgomery reduction. @@ -433,60 +433,60 @@ static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b */ static void sp_256_mont_reduce_10(sp_digit* a, const sp_digit* m, sp_digit mp) { - int i; - sp_digit mu; - - if (mp != 1) { - for (i = 0; i < 9; i++) { - mu = (a[i] * mp) & 0x3ffffff; - sp_256_mul_add_10(a+i, m, mu); - a[i+1] += a[i] >> 26; - } - mu = (a[i] * mp) & 0x3fffffl; - sp_256_mul_add_10(a+i, m, mu); - a[i+1] += a[i] >> 26; - a[i] &= 0x3ffffff; - } - else { - for (i = 0; i < 9; i++) { - mu = a[i] & 0x3ffffff; - sp_256_mul_add_10(a+i, p256_mod, mu); - a[i+1] += a[i] >> 26; - } - mu = a[i] & 0x3fffffl; - sp_256_mul_add_10(a+i, p256_mod, mu); - a[i+1] += a[i] >> 26; - a[i] &= 0x3ffffff; - } - - sp_256_mont_shift_10(a, a); - sp_256_cond_sub_10(a, a, m, 0 - ((a[9] >> 22) > 0)); - sp_256_norm_10(a); + int i; + sp_digit mu; + + if (mp != 1) { + for (i = 0; i < 9; i++) { + mu = (a[i] * mp) & 0x3ffffff; + sp_256_mul_add_10(a+i, m, mu); + a[i+1] += a[i] >> 26; + } + mu = (a[i] * mp) & 0x3fffffl; + sp_256_mul_add_10(a+i, m, mu); + a[i+1] += a[i] >> 26; + a[i] &= 0x3ffffff; + } + else { + for (i = 0; i < 9; i++) { + mu = a[i] & 0x3ffffff; + sp_256_mul_add_10(a+i, p256_mod, mu); + a[i+1] += a[i] >> 26; + } + mu = a[i] & 0x3fffffl; + sp_256_mul_add_10(a+i, p256_mod, mu); + a[i+1] += a[i] >> 26; + a[i] &= 0x3ffffff; + } + + sp_256_mont_shift_10(a, a); + sp_256_cond_sub_10(a, a, m, 0 - ((a[9] >> 22) > 0)); + sp_256_norm_10(a); } /* Multiply a and b into r. (r = a * b) */ static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b) { - int i, j, k; - int64_t c; - - c = ((int64_t)a[9]) * b[9]; - r[19] = (sp_digit)(c >> 26); - c = (c & 0x3ffffff) << 26; - for (k = 17; k >= 0; k--) { - for (i = 9; i >= 0; i--) { - j = k - i; - if (j >= 10) - break; - if (j < 0) - continue; - c += ((int64_t)a[i]) * b[j]; - } - r[k + 2] += c >> 52; - r[k + 1] = (c >> 26) & 0x3ffffff; - c = (c & 0x3ffffff) << 26; - } - r[0] = (sp_digit)(c >> 26); + int i, j, k; + int64_t c; + + c = ((int64_t)a[9]) * b[9]; + r[19] = (sp_digit)(c >> 26); + c = (c & 0x3ffffff) << 26; + for (k = 17; k >= 0; k--) { + for (i = 9; i >= 0; i--) { + j = k - i; + if (j >= 10) + break; + if (j < 0) + continue; + c += ((int64_t)a[i]) * b[j]; + } + r[k + 2] += c >> 52; + r[k + 1] = (c >> 26) & 0x3ffffff; + c = (c & 0x3ffffff) << 26; + } + r[0] = (sp_digit)(c >> 26); } /* Multiply two Montogmery form numbers mod the modulus (prime). @@ -499,39 +499,39 @@ static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b) * mp Montogmery mulitplier. */ static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b, - const sp_digit* m, sp_digit mp) + const sp_digit* m, sp_digit mp) { - sp_256_mul_10(r, a, b); - sp_256_mont_reduce_10(r, m, mp); + sp_256_mul_10(r, a, b); + sp_256_mont_reduce_10(r, m, mp); } /* Square a and put result in r. (r = a * a) */ static void sp_256_sqr_10(sp_digit* r, const sp_digit* a) { - int i, j, k; - int64_t c; - - c = ((int64_t)a[9]) * a[9]; - r[19] = (sp_digit)(c >> 26); - c = (c & 0x3ffffff) << 26; - for (k = 17; k >= 0; k--) { - for (i = 9; i >= 0; i--) { - j = k - i; - if (j >= 10 || i <= j) - break; - if (j < 0) - continue; - - c += ((int64_t)a[i]) * a[j] * 2; - } - if (i == j) - c += ((int64_t)a[i]) * a[i]; - - r[k + 2] += c >> 52; - r[k + 1] = (c >> 26) & 0x3ffffff; - c = (c & 0x3ffffff) << 26; - } - r[0] = (sp_digit)(c >> 26); + int i, j, k; + int64_t c; + + c = ((int64_t)a[9]) * a[9]; + r[19] = (sp_digit)(c >> 26); + c = (c & 0x3ffffff) << 26; + for (k = 17; k >= 0; k--) { + for (i = 9; i >= 0; i--) { + j = k - i; + if (j >= 10 || i <= j) + break; + if (j < 0) + continue; + + c += ((int64_t)a[i]) * a[j] * 2; + } + if (i == j) + c += ((int64_t)a[i]) * a[i]; + + r[k + 2] += c >> 52; + r[k + 1] = (c >> 26) & 0x3ffffff; + c = (c & 0x3ffffff) << 26; + } + r[0] = (sp_digit)(c >> 26); } /* Square the Montgomery form number. (r = a * a mod m) @@ -542,10 +542,10 @@ static void sp_256_sqr_10(sp_digit* r, const sp_digit* a) * mp Montogmery mulitplier. */ static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a, const sp_digit* m, - sp_digit mp) + sp_digit mp) { - sp_256_sqr_10(r, a); - sp_256_mont_reduce_10(r, m, mp); + sp_256_sqr_10(r, a); + sp_256_mont_reduce_10(r, m, mp); } /* Invert the number, in Montgomery form, modulo the modulus (prime) of the @@ -557,8 +557,8 @@ static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a, const sp_digit* m #if 0 /* Mod-2 for the P256 curve. */ static const uint32_t p256_mod_2[8] = { - 0xfffffffd,0xffffffff,0xffffffff,0x00000000, - 0x00000000,0x00000000,0x00000001,0xffffffff, + 0xfffffffd,0xffffffff,0xffffffff,0x00000000, + 0x00000000,0x00000000,0x00000001,0xffffffff, }; //Bit pattern: //2 2 2 2 2 2 2 1...1 @@ -568,17 +568,17 @@ static const uint32_t p256_mod_2[8] = { #endif static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a) { - sp_digit t[2*10]; //can be just [10]? - int i; + sp_digit t[2*10]; //can be just [10]? + int i; - memcpy(t, a, sizeof(sp_digit) * 10); - for (i = 254; i >= 0; i--) { - sp_256_mont_sqr_10(t, t, p256_mod, p256_mp_mod); - /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/ - if (i >= 224 || i == 192 || (i <= 95 && i != 1)) - sp_256_mont_mul_10(t, t, a, p256_mod, p256_mp_mod); - } - memcpy(r, t, sizeof(sp_digit) * 10); + memcpy(t, a, sizeof(sp_digit) * 10); + for (i = 254; i >= 0; i--) { + sp_256_mont_sqr_10(t, t, p256_mod, p256_mp_mod); + /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/ + if (i >= 224 || i == 192 || (i <= 95 && i != 1)) + sp_256_mont_mul_10(t, t, a, p256_mod, p256_mp_mod); + } + memcpy(r, t, sizeof(sp_digit) * 10); } /* Map the Montgomery form projective co-ordinate point to an affine point. @@ -588,35 +588,35 @@ static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a) */ static void sp_256_map_10(sp_point* r, sp_point* p) { - sp_digit t1[2*10]; - sp_digit t2[2*10]; - int32_t n; + sp_digit t1[2*10]; + sp_digit t2[2*10]; + int32_t n; - sp_256_mont_inv_10(t1, p->z); + sp_256_mont_inv_10(t1, p->z); - sp_256_mont_sqr_10(t2, t1, p256_mod, p256_mp_mod); - sp_256_mont_mul_10(t1, t2, t1, p256_mod, p256_mp_mod); + sp_256_mont_sqr_10(t2, t1, p256_mod, p256_mp_mod); + sp_256_mont_mul_10(t1, t2, t1, p256_mod, p256_mp_mod); - /* x /= z^2 */ - sp_256_mont_mul_10(r->x, p->x, t2, p256_mod, p256_mp_mod); - memset(r->x + 10, 0, sizeof(r->x) / 2); - sp_256_mont_reduce_10(r->x, p256_mod, p256_mp_mod); - /* Reduce x to less than modulus */ - n = sp_256_cmp_10(r->x, p256_mod); - sp_256_cond_sub_10(r->x, r->x, p256_mod, 0 - (n >= 0)); - sp_256_norm_10(r->x); + /* x /= z^2 */ + sp_256_mont_mul_10(r->x, p->x, t2, p256_mod, p256_mp_mod); + memset(r->x + 10, 0, sizeof(r->x) / 2); + sp_256_mont_reduce_10(r->x, p256_mod, p256_mp_mod); + /* Reduce x to less than modulus */ + n = sp_256_cmp_10(r->x, p256_mod); + sp_256_cond_sub_10(r->x, r->x, p256_mod, 0 - (n >= 0)); + sp_256_norm_10(r->x); - /* y /= z^3 */ - sp_256_mont_mul_10(r->y, p->y, t1, p256_mod, p256_mp_mod); - memset(r->y + 10, 0, sizeof(r->y) / 2); - sp_256_mont_reduce_10(r->y, p256_mod, p256_mp_mod); - /* Reduce y to less than modulus */ - n = sp_256_cmp_10(r->y, p256_mod); - sp_256_cond_sub_10(r->y, r->y, p256_mod, 0 - (n >= 0)); - sp_256_norm_10(r->y); + /* y /= z^3 */ + sp_256_mont_mul_10(r->y, p->y, t1, p256_mod, p256_mp_mod); + memset(r->y + 10, 0, sizeof(r->y) / 2); + sp_256_mont_reduce_10(r->y, p256_mod, p256_mp_mod); + /* Reduce y to less than modulus */ + n = sp_256_cmp_10(r->y, p256_mod); + sp_256_cond_sub_10(r->y, r->y, p256_mod, 0 - (n >= 0)); + sp_256_norm_10(r->y); - memset(r->z, 0, sizeof(r->z)); - r->z[0] = 1; + memset(r->z, 0, sizeof(r->z)); + r->z[0] = 1; } /* Double the Montgomery form projective point p. @@ -626,54 +626,54 @@ static void sp_256_map_10(sp_point* r, sp_point* p) */ static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p) { - sp_point tp; - sp_digit t1[2*10]; - sp_digit t2[2*10]; - - /* Put point to double into result */ - if (r != p) - *r = *p; /* struct copy */ - - if (r->infinity) { - /* If infinity, don't double (work on dummy value) */ - r = &tp; - } - /* T1 = Z * Z */ - sp_256_mont_sqr_10(t1, r->z, p256_mod, p256_mp_mod); - /* Z = Y * Z */ - sp_256_mont_mul_10(r->z, r->y, r->z, p256_mod, p256_mp_mod); - /* Z = 2Z */ - sp_256_mont_dbl_10(r->z, r->z, p256_mod); - /* T2 = X - T1 */ - sp_256_mont_sub_10(t2, r->x, t1, p256_mod); - /* T1 = X + T1 */ - sp_256_mont_add_10(t1, r->x, t1, p256_mod); - /* T2 = T1 * T2 */ - sp_256_mont_mul_10(t2, t1, t2, p256_mod, p256_mp_mod); - /* T1 = 3T2 */ - sp_256_mont_tpl_10(t1, t2, p256_mod); - /* Y = 2Y */ - sp_256_mont_dbl_10(r->y, r->y, p256_mod); - /* Y = Y * Y */ - sp_256_mont_sqr_10(r->y, r->y, p256_mod, p256_mp_mod); - /* T2 = Y * Y */ - sp_256_mont_sqr_10(t2, r->y, p256_mod, p256_mp_mod); - /* T2 = T2/2 */ - sp_256_div2_10(t2, t2, p256_mod); - /* Y = Y * X */ - sp_256_mont_mul_10(r->y, r->y, r->x, p256_mod, p256_mp_mod); - /* X = T1 * T1 */ - sp_256_mont_mul_10(r->x, t1, t1, p256_mod, p256_mp_mod); - /* X = X - Y */ - sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod); - /* X = X - Y */ - sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod); - /* Y = Y - X */ - sp_256_mont_sub_10(r->y, r->y, r->x, p256_mod); - /* Y = Y * T1 */ - sp_256_mont_mul_10(r->y, r->y, t1, p256_mod, p256_mp_mod); - /* Y = Y - T2 */ - sp_256_mont_sub_10(r->y, r->y, t2, p256_mod); + sp_point tp; + sp_digit t1[2*10]; + sp_digit t2[2*10]; + + /* Put point to double into result */ + if (r != p) + *r = *p; /* struct copy */ + + if (r->infinity) { + /* If infinity, don't double (work on dummy value) */ + r = &tp; + } + /* T1 = Z * Z */ + sp_256_mont_sqr_10(t1, r->z, p256_mod, p256_mp_mod); + /* Z = Y * Z */ + sp_256_mont_mul_10(r->z, r->y, r->z, p256_mod, p256_mp_mod); + /* Z = 2Z */ + sp_256_mont_dbl_10(r->z, r->z, p256_mod); + /* T2 = X - T1 */ + sp_256_mont_sub_10(t2, r->x, t1, p256_mod); + /* T1 = X + T1 */ + sp_256_mont_add_10(t1, r->x, t1, p256_mod); + /* T2 = T1 * T2 */ + sp_256_mont_mul_10(t2, t1, t2, p256_mod, p256_mp_mod); + /* T1 = 3T2 */ + sp_256_mont_tpl_10(t1, t2, p256_mod); + /* Y = 2Y */ + sp_256_mont_dbl_10(r->y, r->y, p256_mod); + /* Y = Y * Y */ + sp_256_mont_sqr_10(r->y, r->y, p256_mod, p256_mp_mod); + /* T2 = Y * Y */ + sp_256_mont_sqr_10(t2, r->y, p256_mod, p256_mp_mod); + /* T2 = T2/2 */ + sp_256_div2_10(t2, t2, p256_mod); + /* Y = Y * X */ + sp_256_mont_mul_10(r->y, r->y, r->x, p256_mod, p256_mp_mod); + /* X = T1 * T1 */ + sp_256_mont_mul_10(r->x, t1, t1, p256_mod, p256_mp_mod); + /* X = X - Y */ + sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod); + /* X = X - Y */ + sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod); + /* Y = Y - X */ + sp_256_mont_sub_10(r->y, r->y, r->x, p256_mod); + /* Y = Y * T1 */ + sp_256_mont_mul_10(r->y, r->y, t1, p256_mod, p256_mp_mod); + /* Y = Y - T2 */ + sp_256_mont_sub_10(r->y, r->y, t2, p256_mod); } /* Add two Montgomery form projective points. @@ -684,73 +684,73 @@ static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p) */ static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q) { - sp_digit t1[2*10]; - sp_digit t2[2*10]; - sp_digit t3[2*10]; - sp_digit t4[2*10]; - sp_digit t5[2*10]; - - /* Ensure only the first point is the same as the result. */ - if (q == r) { - sp_point* a = p; - p = q; - q = a; - } - - /* Check double */ - sp_256_sub_10(t1, p256_mod, q->y); - sp_256_norm_10(t1); - if (sp_256_cmp_equal_10(p->x, q->x) - && sp_256_cmp_equal_10(p->z, q->z) - && (sp_256_cmp_equal_10(p->y, q->y) || sp_256_cmp_equal_10(p->y, t1)) - ) { - sp_256_proj_point_dbl_10(r, p); - } - else { - sp_point tp; - sp_point *v; - - v = r; - if (p->infinity | q->infinity) { - memset(&tp, 0, sizeof(tp)); - v = &tp; - } - - *r = p->infinity ? *q : *p; /* struct copy */ - - /* U1 = X1*Z2^2 */ - sp_256_mont_sqr_10(t1, q->z, p256_mod, p256_mp_mod); - sp_256_mont_mul_10(t3, t1, q->z, p256_mod, p256_mp_mod); - sp_256_mont_mul_10(t1, t1, v->x, p256_mod, p256_mp_mod); - /* U2 = X2*Z1^2 */ - sp_256_mont_sqr_10(t2, v->z, p256_mod, p256_mp_mod); - sp_256_mont_mul_10(t4, t2, v->z, p256_mod, p256_mp_mod); - sp_256_mont_mul_10(t2, t2, q->x, p256_mod, p256_mp_mod); - /* S1 = Y1*Z2^3 */ - sp_256_mont_mul_10(t3, t3, v->y, p256_mod, p256_mp_mod); - /* S2 = Y2*Z1^3 */ - sp_256_mont_mul_10(t4, t4, q->y, p256_mod, p256_mp_mod); - /* H = U2 - U1 */ - sp_256_mont_sub_10(t2, t2, t1, p256_mod); - /* R = S2 - S1 */ - sp_256_mont_sub_10(t4, t4, t3, p256_mod); - /* Z3 = H*Z1*Z2 */ - sp_256_mont_mul_10(v->z, v->z, q->z, p256_mod, p256_mp_mod); - sp_256_mont_mul_10(v->z, v->z, t2, p256_mod, p256_mp_mod); - /* X3 = R^2 - H^3 - 2*U1*H^2 */ - sp_256_mont_sqr_10(v->x, t4, p256_mod, p256_mp_mod); - sp_256_mont_sqr_10(t5, t2, p256_mod, p256_mp_mod); - sp_256_mont_mul_10(v->y, t1, t5, p256_mod, p256_mp_mod); - sp_256_mont_mul_10(t5, t5, t2, p256_mod, p256_mp_mod); - sp_256_mont_sub_10(v->x, v->x, t5, p256_mod); - sp_256_mont_dbl_10(t1, v->y, p256_mod); - sp_256_mont_sub_10(v->x, v->x, t1, p256_mod); - /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ - sp_256_mont_sub_10(v->y, v->y, v->x, p256_mod); - sp_256_mont_mul_10(v->y, v->y, t4, p256_mod, p256_mp_mod); - sp_256_mont_mul_10(t5, t5, t3, p256_mod, p256_mp_mod); - sp_256_mont_sub_10(v->y, v->y, t5, p256_mod); - } + sp_digit t1[2*10]; + sp_digit t2[2*10]; + sp_digit t3[2*10]; + sp_digit t4[2*10]; + sp_digit t5[2*10]; + + /* Ensure only the first point is the same as the result. */ + if (q == r) { + sp_point* a = p; + p = q; + q = a; + } + + /* Check double */ + sp_256_sub_10(t1, p256_mod, q->y); + sp_256_norm_10(t1); + if (sp_256_cmp_equal_10(p->x, q->x) + && sp_256_cmp_equal_10(p->z, q->z) + && (sp_256_cmp_equal_10(p->y, q->y) || sp_256_cmp_equal_10(p->y, t1)) + ) { + sp_256_proj_point_dbl_10(r, p); + } + else { + sp_point tp; + sp_point *v; + + v = r; + if (p->infinity | q->infinity) { + memset(&tp, 0, sizeof(tp)); + v = &tp; + } + + *r = p->infinity ? *q : *p; /* struct copy */ + + /* U1 = X1*Z2^2 */ + sp_256_mont_sqr_10(t1, q->z, p256_mod, p256_mp_mod); + sp_256_mont_mul_10(t3, t1, q->z, p256_mod, p256_mp_mod); + sp_256_mont_mul_10(t1, t1, v->x, p256_mod, p256_mp_mod); + /* U2 = X2*Z1^2 */ + sp_256_mont_sqr_10(t2, v->z, p256_mod, p256_mp_mod); + sp_256_mont_mul_10(t4, t2, v->z, p256_mod, p256_mp_mod); + sp_256_mont_mul_10(t2, t2, q->x, p256_mod, p256_mp_mod); + /* S1 = Y1*Z2^3 */ + sp_256_mont_mul_10(t3, t3, v->y, p256_mod, p256_mp_mod); + /* S2 = Y2*Z1^3 */ + sp_256_mont_mul_10(t4, t4, q->y, p256_mod, p256_mp_mod); + /* H = U2 - U1 */ + sp_256_mont_sub_10(t2, t2, t1, p256_mod); + /* R = S2 - S1 */ + sp_256_mont_sub_10(t4, t4, t3, p256_mod); + /* Z3 = H*Z1*Z2 */ + sp_256_mont_mul_10(v->z, v->z, q->z, p256_mod, p256_mp_mod); + sp_256_mont_mul_10(v->z, v->z, t2, p256_mod, p256_mp_mod); + /* X3 = R^2 - H^3 - 2*U1*H^2 */ + sp_256_mont_sqr_10(v->x, t4, p256_mod, p256_mp_mod); + sp_256_mont_sqr_10(t5, t2, p256_mod, p256_mp_mod); + sp_256_mont_mul_10(v->y, t1, t5, p256_mod, p256_mp_mod); + sp_256_mont_mul_10(t5, t5, t2, p256_mod, p256_mp_mod); + sp_256_mont_sub_10(v->x, v->x, t5, p256_mod); + sp_256_mont_dbl_10(t1, v->y, p256_mod); + sp_256_mont_sub_10(v->x, v->x, t1, p256_mod); + /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ + sp_256_mont_sub_10(v->y, v->y, v->x, p256_mod); + sp_256_mont_mul_10(v->y, v->y, t4, p256_mod, p256_mp_mod); + sp_256_mont_mul_10(t5, t5, t3, p256_mod, p256_mp_mod); + sp_256_mont_sub_10(v->y, v->y, t5, p256_mod); + } } /* Multiply the point by the scalar and return the result. @@ -763,48 +763,48 @@ static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q) */ static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/) { - enum { map = 1 }; /* we always convert result to affine coordinates */ - sp_point t[3]; - sp_digit n; - int i; - int c, y; - - memset(t, 0, sizeof(t)); - - /* t[0] = {0, 0, 1} * norm */ - t[0].infinity = 1; - /* t[1] = {g->x, g->y, g->z} * norm */ - sp_256_mod_mul_norm_10(t[1].x, g->x); - sp_256_mod_mul_norm_10(t[1].y, g->y); - sp_256_mod_mul_norm_10(t[1].z, g->z); - - i = 9; - c = 22; - n = k[i--] << (26 - c); - for (; ; c--) { - if (c == 0) { - if (i == -1) - break; - - n = k[i--]; - c = 26; - } - - y = (n >> 25) & 1; - n <<= 1; - - sp_256_proj_point_add_10(&t[y^1], &t[0], &t[1]); - memcpy(&t[2], &t[y], sizeof(sp_point)); - sp_256_proj_point_dbl_10(&t[2], &t[2]); - memcpy(&t[y], &t[2], sizeof(sp_point)); - } + enum { map = 1 }; /* we always convert result to affine coordinates */ + sp_point t[3]; + sp_digit n; + int i; + int c, y; + + memset(t, 0, sizeof(t)); + + /* t[0] = {0, 0, 1} * norm */ + t[0].infinity = 1; + /* t[1] = {g->x, g->y, g->z} * norm */ + sp_256_mod_mul_norm_10(t[1].x, g->x); + sp_256_mod_mul_norm_10(t[1].y, g->y); + sp_256_mod_mul_norm_10(t[1].z, g->z); + + i = 9; + c = 22; + n = k[i--] << (26 - c); + for (; ; c--) { + if (c == 0) { + if (i == -1) + break; + + n = k[i--]; + c = 26; + } + + y = (n >> 25) & 1; + n <<= 1; + + sp_256_proj_point_add_10(&t[y^1], &t[0], &t[1]); + memcpy(&t[2], &t[y], sizeof(sp_point)); + sp_256_proj_point_dbl_10(&t[2], &t[2]); + memcpy(&t[y], &t[2], sizeof(sp_point)); + } - if (map) - sp_256_map_10(r, &t[0]); - else - memcpy(r, &t[0], sizeof(sp_point)); + if (map) + sp_256_map_10(r, &t[0]); + else + memcpy(r, &t[0], sizeof(sp_point)); - memset(t, 0, sizeof(t)); //paranoia + memset(t, 0, sizeof(t)); //paranoia } /* Multiply the base point of P256 by the scalar and return the result. @@ -816,7 +816,7 @@ static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit* */ static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/) { - sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/); + sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/); } /* Multiply the point by the scalar and serialize the X ordinate. @@ -828,22 +828,22 @@ static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/) */ static void sp_ecc_secret_gen_256(sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32) { - sp_point point[1]; + sp_point point[1]; #if FIXED_PEER_PUBKEY - memset((void*)pub2x32, 0x55, 64); + memset((void*)pub2x32, 0x55, 64); #endif - dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */ - dump_hex(" %s\n", pub2x32 + 32, 32); + dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */ + dump_hex(" %s\n", pub2x32 + 32, 32); - sp_256_point_from_bin2x32(point, pub2x32); - dump_hex("point->x %s\n", point->x, sizeof(point->x)); - dump_hex("point->y %s\n", point->y, sizeof(point->y)); + sp_256_point_from_bin2x32(point, pub2x32); + dump_hex("point->x %s\n", point->x, sizeof(point->x)); + dump_hex("point->y %s\n", point->y, sizeof(point->y)); - sp_256_ecc_mulmod_10(point, point, priv); + sp_256_ecc_mulmod_10(point, point, priv); - sp_256_to_bin(point->x, out32); - dump_hex("out32: %s\n", out32, 32); + sp_256_to_bin(point->x, out32); + dump_hex("out32: %s\n", out32, 32); } /* Generates a scalar that is in the range 1..order-1. */ @@ -852,8 +852,8 @@ static void sp_ecc_secret_gen_256(sp_digit priv[10], const uint8_t *pub2x32, uin #if !SIMPLIFY static void sp_256_add_one_10(sp_digit* a) { - a[0]++; - sp_256_norm_10(a); + a[0]++; + sp_256_norm_10(a); } #endif static void sp_256_ecc_gen_k_10(sp_digit k[10]) |